Cargando…

Coherently controlled quantum features in a coupled interferometric scheme

Over the last several decades, entangled photon pairs generated by spontaneous parametric down conversion processes in both second-order and third-order nonlinear optical materials have been intensively studied for various quantum features such as Bell inequality violation and anticorrelation. In an...

Descripción completa

Detalles Bibliográficos
Autor principal: Ham, Byoung S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159952/
https://www.ncbi.nlm.nih.gov/pubmed/34045595
http://dx.doi.org/10.1038/s41598-021-90668-8
Descripción
Sumario:Over the last several decades, entangled photon pairs generated by spontaneous parametric down conversion processes in both second-order and third-order nonlinear optical materials have been intensively studied for various quantum features such as Bell inequality violation and anticorrelation. In an interferometric scheme, anticorrelation results from photon bunching based on randomness when entangled photon pairs coincidently impinge on a beam splitter. Compared with post-measurement-based probabilistic confirmation, a coherence version has been recently proposed using the wave nature of photons. Here, the origin of quantum features in a coupled interferometric scheme is investigated using pure coherence optics. In addition, a deterministic method of entangled photon-pair generation is proposed for on-demand coherence control of quantum processing.