Cargando…

Kvasir-Capsule, a video capsule endoscopy dataset

Artificial intelligence (AI) is predicted to have profound effects on the future of video capsule endoscopy (VCE) technology. The potential lies in improving anomaly detection while reducing manual labour. Existing work demonstrates the promising benefits of AI-based computer-assisted diagnosis syst...

Descripción completa

Detalles Bibliográficos
Autores principales: Smedsrud, Pia H., Thambawita, Vajira, Hicks, Steven A., Gjestang, Henrik, Nedrejord, Oda Olsen, Næss, Espen, Borgli, Hanna, Jha, Debesh, Berstad, Tor Jan Derek, Eskeland, Sigrun L., Lux, Mathias, Espeland, Håvard, Petlund, Andreas, Nguyen, Duc Tien Dang, Garcia-Ceja, Enrique, Johansen, Dag, Schmidt, Peter T., Toth, Ervin, Hammer, Hugo L., de Lange, Thomas, Riegler, Michael A., Halvorsen, Pål
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160146/
https://www.ncbi.nlm.nih.gov/pubmed/34045470
http://dx.doi.org/10.1038/s41597-021-00920-z
_version_ 1783700223007129600
author Smedsrud, Pia H.
Thambawita, Vajira
Hicks, Steven A.
Gjestang, Henrik
Nedrejord, Oda Olsen
Næss, Espen
Borgli, Hanna
Jha, Debesh
Berstad, Tor Jan Derek
Eskeland, Sigrun L.
Lux, Mathias
Espeland, Håvard
Petlund, Andreas
Nguyen, Duc Tien Dang
Garcia-Ceja, Enrique
Johansen, Dag
Schmidt, Peter T.
Toth, Ervin
Hammer, Hugo L.
de Lange, Thomas
Riegler, Michael A.
Halvorsen, Pål
author_facet Smedsrud, Pia H.
Thambawita, Vajira
Hicks, Steven A.
Gjestang, Henrik
Nedrejord, Oda Olsen
Næss, Espen
Borgli, Hanna
Jha, Debesh
Berstad, Tor Jan Derek
Eskeland, Sigrun L.
Lux, Mathias
Espeland, Håvard
Petlund, Andreas
Nguyen, Duc Tien Dang
Garcia-Ceja, Enrique
Johansen, Dag
Schmidt, Peter T.
Toth, Ervin
Hammer, Hugo L.
de Lange, Thomas
Riegler, Michael A.
Halvorsen, Pål
author_sort Smedsrud, Pia H.
collection PubMed
description Artificial intelligence (AI) is predicted to have profound effects on the future of video capsule endoscopy (VCE) technology. The potential lies in improving anomaly detection while reducing manual labour. Existing work demonstrates the promising benefits of AI-based computer-assisted diagnosis systems for VCE. They also show great potential for improvements to achieve even better results. Also, medical data is often sparse and unavailable to the research community, and qualified medical personnel rarely have time for the tedious labelling work. We present Kvasir-Capsule, a large VCE dataset collected from examinations at a Norwegian Hospital. Kvasir-Capsule consists of 117 videos which can be used to extract a total of 4,741,504 image frames. We have labelled and medically verified 47,238 frames with a bounding box around findings from 14 different classes. In addition to these labelled images, there are 4,694,266 unlabelled frames included in the dataset. The Kvasir-Capsule dataset can play a valuable role in developing better algorithms in order to reach true potential of VCE technology.
format Online
Article
Text
id pubmed-8160146
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-81601462021-06-10 Kvasir-Capsule, a video capsule endoscopy dataset Smedsrud, Pia H. Thambawita, Vajira Hicks, Steven A. Gjestang, Henrik Nedrejord, Oda Olsen Næss, Espen Borgli, Hanna Jha, Debesh Berstad, Tor Jan Derek Eskeland, Sigrun L. Lux, Mathias Espeland, Håvard Petlund, Andreas Nguyen, Duc Tien Dang Garcia-Ceja, Enrique Johansen, Dag Schmidt, Peter T. Toth, Ervin Hammer, Hugo L. de Lange, Thomas Riegler, Michael A. Halvorsen, Pål Sci Data Data Descriptor Artificial intelligence (AI) is predicted to have profound effects on the future of video capsule endoscopy (VCE) technology. The potential lies in improving anomaly detection while reducing manual labour. Existing work demonstrates the promising benefits of AI-based computer-assisted diagnosis systems for VCE. They also show great potential for improvements to achieve even better results. Also, medical data is often sparse and unavailable to the research community, and qualified medical personnel rarely have time for the tedious labelling work. We present Kvasir-Capsule, a large VCE dataset collected from examinations at a Norwegian Hospital. Kvasir-Capsule consists of 117 videos which can be used to extract a total of 4,741,504 image frames. We have labelled and medically verified 47,238 frames with a bounding box around findings from 14 different classes. In addition to these labelled images, there are 4,694,266 unlabelled frames included in the dataset. The Kvasir-Capsule dataset can play a valuable role in developing better algorithms in order to reach true potential of VCE technology. Nature Publishing Group UK 2021-05-27 /pmc/articles/PMC8160146/ /pubmed/34045470 http://dx.doi.org/10.1038/s41597-021-00920-z Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) applies to the metadata files associated with this article.
spellingShingle Data Descriptor
Smedsrud, Pia H.
Thambawita, Vajira
Hicks, Steven A.
Gjestang, Henrik
Nedrejord, Oda Olsen
Næss, Espen
Borgli, Hanna
Jha, Debesh
Berstad, Tor Jan Derek
Eskeland, Sigrun L.
Lux, Mathias
Espeland, Håvard
Petlund, Andreas
Nguyen, Duc Tien Dang
Garcia-Ceja, Enrique
Johansen, Dag
Schmidt, Peter T.
Toth, Ervin
Hammer, Hugo L.
de Lange, Thomas
Riegler, Michael A.
Halvorsen, Pål
Kvasir-Capsule, a video capsule endoscopy dataset
title Kvasir-Capsule, a video capsule endoscopy dataset
title_full Kvasir-Capsule, a video capsule endoscopy dataset
title_fullStr Kvasir-Capsule, a video capsule endoscopy dataset
title_full_unstemmed Kvasir-Capsule, a video capsule endoscopy dataset
title_short Kvasir-Capsule, a video capsule endoscopy dataset
title_sort kvasir-capsule, a video capsule endoscopy dataset
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160146/
https://www.ncbi.nlm.nih.gov/pubmed/34045470
http://dx.doi.org/10.1038/s41597-021-00920-z
work_keys_str_mv AT smedsrudpiah kvasircapsuleavideocapsuleendoscopydataset
AT thambawitavajira kvasircapsuleavideocapsuleendoscopydataset
AT hicksstevena kvasircapsuleavideocapsuleendoscopydataset
AT gjestanghenrik kvasircapsuleavideocapsuleendoscopydataset
AT nedrejordodaolsen kvasircapsuleavideocapsuleendoscopydataset
AT næssespen kvasircapsuleavideocapsuleendoscopydataset
AT borglihanna kvasircapsuleavideocapsuleendoscopydataset
AT jhadebesh kvasircapsuleavideocapsuleendoscopydataset
AT berstadtorjanderek kvasircapsuleavideocapsuleendoscopydataset
AT eskelandsigrunl kvasircapsuleavideocapsuleendoscopydataset
AT luxmathias kvasircapsuleavideocapsuleendoscopydataset
AT espelandhavard kvasircapsuleavideocapsuleendoscopydataset
AT petlundandreas kvasircapsuleavideocapsuleendoscopydataset
AT nguyenductiendang kvasircapsuleavideocapsuleendoscopydataset
AT garciacejaenrique kvasircapsuleavideocapsuleendoscopydataset
AT johansendag kvasircapsuleavideocapsuleendoscopydataset
AT schmidtpetert kvasircapsuleavideocapsuleendoscopydataset
AT tothervin kvasircapsuleavideocapsuleendoscopydataset
AT hammerhugol kvasircapsuleavideocapsuleendoscopydataset
AT delangethomas kvasircapsuleavideocapsuleendoscopydataset
AT rieglermichaela kvasircapsuleavideocapsuleendoscopydataset
AT halvorsenpal kvasircapsuleavideocapsuleendoscopydataset