Cargando…
Dynamic changes in gene-to-gene regulatory networks in response to SARS-CoV-2 infection
The current pandemic of SARS-CoV-2 has caused extensive damage to society. The characterization of SARS-CoV-2 profiles has been addressed by researchers globally with the aim of resolving this disruptive crisis. This investigation process is indispensable to understand how SARS-CoV-2 behaves in huma...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160150/ https://www.ncbi.nlm.nih.gov/pubmed/34045524 http://dx.doi.org/10.1038/s41598-021-90556-1 |
Sumario: | The current pandemic of SARS-CoV-2 has caused extensive damage to society. The characterization of SARS-CoV-2 profiles has been addressed by researchers globally with the aim of resolving this disruptive crisis. This investigation process is indispensable to understand how SARS-CoV-2 behaves in human host cells. However, little is known about the systematic molecular mechanisms involved in the effects of SARS-CoV-2 infection on human host cells. Here, we present gene-to-gene regulatory networks in response to SARS-CoV-2 using a Bayesian network. We examined the dynamic changes in the SARS-CoV-2-purturbated networks established by our proposed framework for gene network analysis, thus revealing that interferon signaling gradually switched to the subsequent inflammatory cytokine signaling cascades. Furthermore, we succeeded in capturing a COVID-19 patient-specific network in which transduction of these signals was concurrently induced. This enabled us to explore the local regulatory systems influenced by SARS-CoV-2 in host cells more precisely at an individual level. Our panel of network analyses has provided new insights into SARS-CoV-2 research from the perspective of cellular systems. |
---|