Cargando…
Safe opioid prescribing: a prognostic machine learning approach to predicting 30-day risk after an opioid dispensation in Alberta, Canada
OBJECTIVE: To develop machine learning models employing administrative health data that can estimate risk of adverse outcomes within 30 days of an opioid dispensation for use by health departments or prescription monitoring programmes. DESIGN, SETTING AND PARTICIPANTS: This prognostic study was cond...
Autores principales: | Sharma, Vishal, Kulkarni, Vinaykumar, Eurich, Dean T, Kumar, Luke, Samanani, Salim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160164/ https://www.ncbi.nlm.nih.gov/pubmed/34039572 http://dx.doi.org/10.1136/bmjopen-2020-043964 |
Ejemplares similares
-
Concurrent use of opioids and benzodiazepines/Z-drugs in Alberta, Canada and the risk of hospitalisation and death: a case cross-over study
por: Sharma, Vishal, et al.
Publicado: (2020) -
Characterisation of concurrent use of prescription opioids and benzodiazepine/Z-drugs in Alberta, Canada: a population-based study
por: Sharma, Vishal, et al.
Publicado: (2019) -
Development and Validation of a Machine Learning Model to Estimate Risk of Adverse Outcomes Within 30 Days of Opioid Dispensation
por: Sharma, Vishal, et al.
Publicado: (2022) -
Predicting falls-related admissions in older adults in Alberta, Canada: a machine-learning falls prevention tool developed using population administrative health data
por: Sharma, Vishal, et al.
Publicado: (2023) -
Appropriateness of COVID-19 public health guidelines for an Alberta First Nations community
por: Soprovich, Allison L., et al.
Publicado: (2022)