Cargando…

Second-order slip effect on bio-convectional viscoelastic nanofluid flow through a stretching cylinder with swimming microorganisms and melting phenomenon

The uses of nanofluid in cooling technology is growing. The nanofluid is made up of metallic and nonmetallic particles that are distributed in a base fluid. This research provides a summary of fuel cell models, uses, and how they function. Researchers have made significant contributions in the follo...

Descripción completa

Detalles Bibliográficos
Autores principales: Waqas, Hassan, Farooq, Umar, Shah, Zahir, Kumam, Poom, Shutaywi, Meshal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160184/
https://www.ncbi.nlm.nih.gov/pubmed/34045579
http://dx.doi.org/10.1038/s41598-021-90671-z
Descripción
Sumario:The uses of nanofluid in cooling technology is growing. The nanofluid is made up of metallic and nonmetallic particles that are distributed in a base fluid. This research provides a summary of fuel cell models, uses, and how they function. Researchers have made significant contributions in the following era due to the importance of bioconvection in nanotechnology and a variety of biological systems. The idea of the recent work is to evaluate the aspects of the Cattaneo–Christov (C–C) heat and mass flux model, the second-order boundary with melting phenomenon on the bioconvective flow of viscoelastic nanofluid across a cylinder. The nature of the activation energy, thermal conductivity is also taken into account. Appropriate similarity transformations are utilized to reframe the PDEs of the modeled system into a system of ODEs. The governing equations for the renovated system of ODEs are treated by a shooting function. Here bvp4c built-in function computational tool MATLAB is used. The two-dimensional flow has ceased application in several areas, such as polymer industry, material synthesis technology, nano-biopolymer computer graphics processing, industry, mechanical engineering, airplane structures, and scientific research, which is much more useful in nanotechnology. The results of emerging important flow-field parameters are investigated with the aid of graphs and numerical results.