Cargando…
Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization
The synthetic pathways of life’s building blocks are envisaged to be through a series of complex prebiotic reactions and processes. However, the strategy to compartmentalize and concentrate biopolymers under prebiotic conditions remains elusive. Liquid-liquid phase separation is a mechanism by which...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160217/ https://www.ncbi.nlm.nih.gov/pubmed/34045455 http://dx.doi.org/10.1038/s41467-021-23410-7 |
_version_ | 1783700235539709952 |
---|---|
author | Guo, Wei Kinghorn, Andrew B. Zhang, Yage Li, Qingchuan Poonam, Aditi Dey Tanner, Julian A. Shum, Ho Cheung |
author_facet | Guo, Wei Kinghorn, Andrew B. Zhang, Yage Li, Qingchuan Poonam, Aditi Dey Tanner, Julian A. Shum, Ho Cheung |
author_sort | Guo, Wei |
collection | PubMed |
description | The synthetic pathways of life’s building blocks are envisaged to be through a series of complex prebiotic reactions and processes. However, the strategy to compartmentalize and concentrate biopolymers under prebiotic conditions remains elusive. Liquid-liquid phase separation is a mechanism by which membraneless organelles form inside cells, and has been hypothesized as a potential mechanism for prebiotic compartmentalization. Associative phase separation of oppositely charged species has been shown to partition RNA, but the strongly negative charge exhibited by RNA suggests that RNA-polycation interactions could inhibit RNA folding and its functioning inside the coacervates. Here, we present a prebiotically plausible pathway for non-associative phase separation within an evaporating all-aqueous sessile droplet. We quantitatively investigate the kinetic pathway of phase separation triggered by the non-uniform evaporation rate, together with the Marangoni flow-driven hydrodynamics inside the sessile droplet. With the ability to undergo liquid-liquid phase separation, the drying droplets provide a robust mechanism for formation of prebiotic membraneless compartments, as demonstrated by localization and storage of nucleic acids, in vitro transcription, as well as a three-fold enhancement of ribozyme activity. The compartmentalization mechanism illustrated in this model system is feasible on wet organophilic silica-rich surfaces during early molecular evolution. |
format | Online Article Text |
id | pubmed-8160217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-81602172021-06-11 Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization Guo, Wei Kinghorn, Andrew B. Zhang, Yage Li, Qingchuan Poonam, Aditi Dey Tanner, Julian A. Shum, Ho Cheung Nat Commun Article The synthetic pathways of life’s building blocks are envisaged to be through a series of complex prebiotic reactions and processes. However, the strategy to compartmentalize and concentrate biopolymers under prebiotic conditions remains elusive. Liquid-liquid phase separation is a mechanism by which membraneless organelles form inside cells, and has been hypothesized as a potential mechanism for prebiotic compartmentalization. Associative phase separation of oppositely charged species has been shown to partition RNA, but the strongly negative charge exhibited by RNA suggests that RNA-polycation interactions could inhibit RNA folding and its functioning inside the coacervates. Here, we present a prebiotically plausible pathway for non-associative phase separation within an evaporating all-aqueous sessile droplet. We quantitatively investigate the kinetic pathway of phase separation triggered by the non-uniform evaporation rate, together with the Marangoni flow-driven hydrodynamics inside the sessile droplet. With the ability to undergo liquid-liquid phase separation, the drying droplets provide a robust mechanism for formation of prebiotic membraneless compartments, as demonstrated by localization and storage of nucleic acids, in vitro transcription, as well as a three-fold enhancement of ribozyme activity. The compartmentalization mechanism illustrated in this model system is feasible on wet organophilic silica-rich surfaces during early molecular evolution. Nature Publishing Group UK 2021-05-27 /pmc/articles/PMC8160217/ /pubmed/34045455 http://dx.doi.org/10.1038/s41467-021-23410-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Guo, Wei Kinghorn, Andrew B. Zhang, Yage Li, Qingchuan Poonam, Aditi Dey Tanner, Julian A. Shum, Ho Cheung Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization |
title | Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization |
title_full | Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization |
title_fullStr | Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization |
title_full_unstemmed | Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization |
title_short | Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization |
title_sort | non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160217/ https://www.ncbi.nlm.nih.gov/pubmed/34045455 http://dx.doi.org/10.1038/s41467-021-23410-7 |
work_keys_str_mv | AT guowei nonassociativephaseseparationinanevaporatingdropletasamodelforprebioticcompartmentalization AT kinghornandrewb nonassociativephaseseparationinanevaporatingdropletasamodelforprebioticcompartmentalization AT zhangyage nonassociativephaseseparationinanevaporatingdropletasamodelforprebioticcompartmentalization AT liqingchuan nonassociativephaseseparationinanevaporatingdropletasamodelforprebioticcompartmentalization AT poonamaditidey nonassociativephaseseparationinanevaporatingdropletasamodelforprebioticcompartmentalization AT tannerjuliana nonassociativephaseseparationinanevaporatingdropletasamodelforprebioticcompartmentalization AT shumhocheung nonassociativephaseseparationinanevaporatingdropletasamodelforprebioticcompartmentalization |