Cargando…
Detection and Grading of Gliomas Using a Novel Two-Phase Machine Learning Method Based on MRI Images
The early detection and grading of gliomas is important for treatment decision and assessment of prognosis. Over the last decade numerous automated computer analysis tools have been proposed, which can potentially lead to more reliable and reproducible brain tumor diagnostic procedures. In this pape...
Autores principales: | Chen, Tao, Xiao, Feng, Yu, Zunpeng, Yuan, Mengxue, Xu, Haibo, Lu, Long |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160229/ https://www.ncbi.nlm.nih.gov/pubmed/34054411 http://dx.doi.org/10.3389/fnins.2021.650629 |
Ejemplares similares
-
Machine Learning Models for Multiparametric Glioma Grading With Quantitative Result Interpretations
por: Wang, Xiuying, et al.
Publicado: (2019) -
Glioma Grading on Conventional MR Images: A Deep Learning Study With Transfer Learning
por: Yang, Yang, et al.
Publicado: (2018) -
Texture feature analysis of MRI-ADC images to differentiate glioma grades using machine learning techniques
por: Vijithananda, Sahan M., et al.
Publicado: (2023) -
MRI features predict p53 status in lower-grade gliomas via a machine-learning approach
por: Li, Yiming, et al.
Publicado: (2017) -
Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors
por: Park, Yae Won, et al.
Publicado: (2019)