Cargando…
Predictive modeling for peri-implantitis by using machine learning techniques
The purpose of this retrospective cohort study was to create a model for predicting the onset of peri-implantitis by using machine learning methods and to clarify interactions between risk indicators. This study evaluated 254 implants, 127 with and 127 without peri-implantitis, from among 1408 impla...
Autores principales: | Mameno, Tomoaki, Wada, Masahiro, Nozaki, Kazunori, Takahashi, Toshihito, Tsujioka, Yoshitaka, Akema, Suzuna, Hasegawa, Daisuke, Ikebe, Kazunori |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160334/ https://www.ncbi.nlm.nih.gov/pubmed/34045590 http://dx.doi.org/10.1038/s41598-021-90642-4 |
Ejemplares similares
-
Prevalence and risk indicators for peri-implant diseases: A literature review
por: Wada, Masahiro, et al.
Publicado: (2021) -
Identification of dental implants using deep learning—pilot study
por: Takahashi, Toshihito, et al.
Publicado: (2020) -
Longitudinal study on the effect of keratinized mucosal augmentation surrounding dental implants in preventing peri-implant bone loss
por: Kikuchi, Takeshi, et al.
Publicado: (2022) -
Deep learning-based detection of dental prostheses and restorations
por: Takahashi, Toshihito, et al.
Publicado: (2021) -
Effective oral function improvement by restoration-driven implant treatment after mandibular resection with a scapular flap: a case report
por: Kosaka, Takayuki, et al.
Publicado: (2022)