Cargando…
Interpretability Versus Accuracy: A Comparison of Machine Learning Models Built Using Different Algorithms, Performance Measures, and Features to Predict E. coli Levels in Agricultural Water
Since E. coli is considered a fecal indicator in surface water, government water quality standards and industry guidance often rely on E. coli monitoring to identify when there is an increased risk of pathogen contamination of water used for produce production (e.g., for irrigation). However, studie...
Autores principales: | Weller, Daniel L., Love, Tanzy M. T., Wiedmann, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160515/ https://www.ncbi.nlm.nih.gov/pubmed/34056577 http://dx.doi.org/10.3389/frai.2021.628441 |
Ejemplares similares
-
Prediction of E. coli Concentrations in Agricultural Pond Waters: Application and Comparison of Machine Learning Algorithms
por: Stocker, Matthew D., et al.
Publicado: (2022) -
Inside out: transforming images of lab-grown plants for machine learning applications in agriculture
por: Krosney, Alexander E., et al.
Publicado: (2023) -
Editorial: Machine Learning for Water Resources
por: Mariethoz, Gregoire, et al.
Publicado: (2021) -
Impact of Box-Cox Transformation on Machine-Learning Algorithms
por: Blum, Luca, et al.
Publicado: (2022) -
Classification model for accuracy and intrusion detection using machine learning approach
por: Agarwal, Arushi, et al.
Publicado: (2021)