Cargando…
Validation of Rayleigh Wave Theoretical Formulation with Single-Station Rotational Records of Mine Tremors in Lower Silesian Copper Basin
The classical Rayleigh surface rotational wave in terms of its theoretical notation and, resulting from this, properties associated with the induced seismic phenomena in mines are presented. This kind of seismic wave was analysed in-depth from the point of view of the parameters governing the form o...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160675/ https://www.ncbi.nlm.nih.gov/pubmed/34065469 http://dx.doi.org/10.3390/s21103566 |
Sumario: | The classical Rayleigh surface rotational wave in terms of its theoretical notation and, resulting from this, properties associated with the induced seismic phenomena in mines are presented. This kind of seismic wave was analysed in-depth from the point of view of the parameters governing the form of its mathematical notation based on the similarity to the records obtained during the induced seismicity in near-field 6-DoF monitoring. Furthermore, conducted field measurements made it possible to relate the amount of the emitted seismic energy to the expected highest amplitude of rotational vibrations in the entire field of their impact on the rock mass. As a result, this made it possible to impose the completely defined R wave to the numerical models of given objects; the safety level, when subjected to the dynamic load induced by the rotational wave, would be an objective of the performed analyses. The conducted preliminary analyses were prepared for a plane strain state, for which the values of seismic rotations were evaluated concerning the energy and the distance of the seismic event’s source. As a result of the performed simulations, it was found that the results of the calculations matched with a satisfying degree with the field seismic measurements of the rotational ground motion induced by propagating the seismic wave. Such a verified analytical description of the theoretical formulas can be the basis for the implementation of R-wave characteristics into seismic codes and numerical analyses of object stability in the Lower Silesian Copper Basin region. |
---|