Cargando…
A Comparative Study on the Wettability of Unstructured and Structured LiFePO(4) with Nanosecond Pulsed Fiber Laser
The wettability of electrodes increases the power and energy densities of the cells of lithium-ion batteries, which is vital to improving their electrochemical performance. Numerous studies in the past have attempted to explain the effect of electrolyte and calendering on wettability. In this work,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160679/ https://www.ncbi.nlm.nih.gov/pubmed/34065286 http://dx.doi.org/10.3390/mi12050582 |
_version_ | 1783700335179595776 |
---|---|
author | Berhe, Mulugeta Gebrekiros Lee, Dongkyoung |
author_facet | Berhe, Mulugeta Gebrekiros Lee, Dongkyoung |
author_sort | Berhe, Mulugeta Gebrekiros |
collection | PubMed |
description | The wettability of electrodes increases the power and energy densities of the cells of lithium-ion batteries, which is vital to improving their electrochemical performance. Numerous studies in the past have attempted to explain the effect of electrolyte and calendering on wettability. In this work, the wettability behavior of structured and unstructured LiFePO(4) electrodes was studied. Firstly, the wettability morphology of the structured electrode was analyzed, and the electrode geometry was quantified in terms of ablation top and bottom width, ablation depth, and aspect ratio. From the result of the geometry analysis, the minimum measured values of aspect ratio and ablation depth were used as structured electrodes. Laser structuring with pitch distances of 112 μm, 224 μm, and 448 μm was applied. Secondly, the wettability of the electrodes was measured mainly by total wetting time and electrolyte spreading area. This study demonstrates that the laser-based structuring of the electrode increases the electrochemically active surface area of the electrode. The electrode structured with 112 μm pitch distance exhibited the fastest wetting at a time of 13.5 s. However, the unstructured electrode exhibited full wetting at a time of 84 s. |
format | Online Article Text |
id | pubmed-8160679 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81606792021-05-29 A Comparative Study on the Wettability of Unstructured and Structured LiFePO(4) with Nanosecond Pulsed Fiber Laser Berhe, Mulugeta Gebrekiros Lee, Dongkyoung Micromachines (Basel) Article The wettability of electrodes increases the power and energy densities of the cells of lithium-ion batteries, which is vital to improving their electrochemical performance. Numerous studies in the past have attempted to explain the effect of electrolyte and calendering on wettability. In this work, the wettability behavior of structured and unstructured LiFePO(4) electrodes was studied. Firstly, the wettability morphology of the structured electrode was analyzed, and the electrode geometry was quantified in terms of ablation top and bottom width, ablation depth, and aspect ratio. From the result of the geometry analysis, the minimum measured values of aspect ratio and ablation depth were used as structured electrodes. Laser structuring with pitch distances of 112 μm, 224 μm, and 448 μm was applied. Secondly, the wettability of the electrodes was measured mainly by total wetting time and electrolyte spreading area. This study demonstrates that the laser-based structuring of the electrode increases the electrochemically active surface area of the electrode. The electrode structured with 112 μm pitch distance exhibited the fastest wetting at a time of 13.5 s. However, the unstructured electrode exhibited full wetting at a time of 84 s. MDPI 2021-05-20 /pmc/articles/PMC8160679/ /pubmed/34065286 http://dx.doi.org/10.3390/mi12050582 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Berhe, Mulugeta Gebrekiros Lee, Dongkyoung A Comparative Study on the Wettability of Unstructured and Structured LiFePO(4) with Nanosecond Pulsed Fiber Laser |
title | A Comparative Study on the Wettability of Unstructured and Structured LiFePO(4) with Nanosecond Pulsed Fiber Laser |
title_full | A Comparative Study on the Wettability of Unstructured and Structured LiFePO(4) with Nanosecond Pulsed Fiber Laser |
title_fullStr | A Comparative Study on the Wettability of Unstructured and Structured LiFePO(4) with Nanosecond Pulsed Fiber Laser |
title_full_unstemmed | A Comparative Study on the Wettability of Unstructured and Structured LiFePO(4) with Nanosecond Pulsed Fiber Laser |
title_short | A Comparative Study on the Wettability of Unstructured and Structured LiFePO(4) with Nanosecond Pulsed Fiber Laser |
title_sort | comparative study on the wettability of unstructured and structured lifepo(4) with nanosecond pulsed fiber laser |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160679/ https://www.ncbi.nlm.nih.gov/pubmed/34065286 http://dx.doi.org/10.3390/mi12050582 |
work_keys_str_mv | AT berhemulugetagebrekiros acomparativestudyonthewettabilityofunstructuredandstructuredlifepo4withnanosecondpulsedfiberlaser AT leedongkyoung acomparativestudyonthewettabilityofunstructuredandstructuredlifepo4withnanosecondpulsedfiberlaser AT berhemulugetagebrekiros comparativestudyonthewettabilityofunstructuredandstructuredlifepo4withnanosecondpulsedfiberlaser AT leedongkyoung comparativestudyonthewettabilityofunstructuredandstructuredlifepo4withnanosecondpulsedfiberlaser |