Cargando…
Graph neural network based coarse-grained mapping prediction
The selection of coarse-grained (CG) mapping operators is a critical step for CG molecular dynamics (MD) simulation. It is still an open question about what is optimal for this choice and there is a need for theory. The current state-of-the art method is mapping operators manually selected by expert...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161155/ https://www.ncbi.nlm.nih.gov/pubmed/34123175 http://dx.doi.org/10.1039/d0sc02458a |
_version_ | 1783700443764883456 |
---|---|
author | Li, Zhiheng Wellawatte, Geemi P. Chakraborty, Maghesree Gandhi, Heta A. Xu, Chenliang White, Andrew D. |
author_facet | Li, Zhiheng Wellawatte, Geemi P. Chakraborty, Maghesree Gandhi, Heta A. Xu, Chenliang White, Andrew D. |
author_sort | Li, Zhiheng |
collection | PubMed |
description | The selection of coarse-grained (CG) mapping operators is a critical step for CG molecular dynamics (MD) simulation. It is still an open question about what is optimal for this choice and there is a need for theory. The current state-of-the art method is mapping operators manually selected by experts. In this work, we demonstrate an automated approach by viewing this problem as supervised learning where we seek to reproduce the mapping operators produced by experts. We present a graph neural network based CG mapping predictor called Deep Supervised Graph Partitioning Model (DSGPM) that treats mapping operators as a graph segmentation problem. DSGPM is trained on a novel dataset, Human-annotated Mappings (HAM), consisting of 1180 molecules with expert annotated mapping operators. HAM can be used to facilitate further research in this area. Our model uses a novel metric learning objective to produce high-quality atomic features that are used in spectral clustering. The results show that the DSGPM outperforms state-of-the-art methods in the field of graph segmentation. Finally, we find that predicted CG mapping operators indeed result in good CG MD models when used in simulation. |
format | Online Article Text |
id | pubmed-8161155 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-81611552021-06-11 Graph neural network based coarse-grained mapping prediction Li, Zhiheng Wellawatte, Geemi P. Chakraborty, Maghesree Gandhi, Heta A. Xu, Chenliang White, Andrew D. Chem Sci Chemistry The selection of coarse-grained (CG) mapping operators is a critical step for CG molecular dynamics (MD) simulation. It is still an open question about what is optimal for this choice and there is a need for theory. The current state-of-the art method is mapping operators manually selected by experts. In this work, we demonstrate an automated approach by viewing this problem as supervised learning where we seek to reproduce the mapping operators produced by experts. We present a graph neural network based CG mapping predictor called Deep Supervised Graph Partitioning Model (DSGPM) that treats mapping operators as a graph segmentation problem. DSGPM is trained on a novel dataset, Human-annotated Mappings (HAM), consisting of 1180 molecules with expert annotated mapping operators. HAM can be used to facilitate further research in this area. Our model uses a novel metric learning objective to produce high-quality atomic features that are used in spectral clustering. The results show that the DSGPM outperforms state-of-the-art methods in the field of graph segmentation. Finally, we find that predicted CG mapping operators indeed result in good CG MD models when used in simulation. The Royal Society of Chemistry 2020-08-11 /pmc/articles/PMC8161155/ /pubmed/34123175 http://dx.doi.org/10.1039/d0sc02458a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Li, Zhiheng Wellawatte, Geemi P. Chakraborty, Maghesree Gandhi, Heta A. Xu, Chenliang White, Andrew D. Graph neural network based coarse-grained mapping prediction |
title | Graph neural network based coarse-grained mapping prediction |
title_full | Graph neural network based coarse-grained mapping prediction |
title_fullStr | Graph neural network based coarse-grained mapping prediction |
title_full_unstemmed | Graph neural network based coarse-grained mapping prediction |
title_short | Graph neural network based coarse-grained mapping prediction |
title_sort | graph neural network based coarse-grained mapping prediction |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161155/ https://www.ncbi.nlm.nih.gov/pubmed/34123175 http://dx.doi.org/10.1039/d0sc02458a |
work_keys_str_mv | AT lizhiheng graphneuralnetworkbasedcoarsegrainedmappingprediction AT wellawattegeemip graphneuralnetworkbasedcoarsegrainedmappingprediction AT chakrabortymaghesree graphneuralnetworkbasedcoarsegrainedmappingprediction AT gandhihetaa graphneuralnetworkbasedcoarsegrainedmappingprediction AT xuchenliang graphneuralnetworkbasedcoarsegrainedmappingprediction AT whiteandrewd graphneuralnetworkbasedcoarsegrainedmappingprediction |