Cargando…
Graph neural network based coarse-grained mapping prediction
The selection of coarse-grained (CG) mapping operators is a critical step for CG molecular dynamics (MD) simulation. It is still an open question about what is optimal for this choice and there is a need for theory. The current state-of-the art method is mapping operators manually selected by expert...
Autores principales: | Li, Zhiheng, Wellawatte, Geemi P., Chakraborty, Maghesree, Gandhi, Heta A., Xu, Chenliang, White, Andrew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161155/ https://www.ncbi.nlm.nih.gov/pubmed/34123175 http://dx.doi.org/10.1039/d0sc02458a |
Ejemplares similares
-
Correction: Graph neural network based coarse-grained mapping prediction
por: Li, Zhiheng, et al.
Publicado: (2021) -
Predicting chemical shifts with graph neural networks
por: Yang, Ziyue, et al.
Publicado: (2021) -
A Perspective on
Explanations of Molecular Prediction
Models
por: Wellawatte, Geemi P., et al.
Publicado: (2023) -
Model agnostic generation of counterfactual explanations for molecules
por: Wellawatte, Geemi P., et al.
Publicado: (2022) -
Assessment of chemistry knowledge in large language models that generate code
por: White, Andrew D., et al.
Publicado: (2023)