Cargando…

Device-Free Human Activity Recognition with Low-Resolution Infrared Array Sensor Using Long Short-Term Memory Neural Network

Sensor-based human activity recognition (HAR) has attracted enormous interests due to its wide applications in the Internet of Things (IoT), smart homes and healthcare. In this paper, a low-resolution infrared array sensor-based HAR approach is proposed using the deep learning framework. The device-...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Cunyi, Chen, Jing, Miao, Xiren, Jiang, Hao, Chen, Deying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161224/
https://www.ncbi.nlm.nih.gov/pubmed/34065183
http://dx.doi.org/10.3390/s21103551
Descripción
Sumario:Sensor-based human activity recognition (HAR) has attracted enormous interests due to its wide applications in the Internet of Things (IoT), smart homes and healthcare. In this paper, a low-resolution infrared array sensor-based HAR approach is proposed using the deep learning framework. The device-free sensing system leverages the infrared array sensor of [Formula: see text] pixels to collect the infrared signals, which can ensure users’ privacy and effectively reduce the deployment cost of the network. To reduce the influence of temperature variations, a combination of the J-filter noise reduction method and the Butterworth filter is performed to preprocess the infrared signals. Long short-term memory (LSTM), a representative recurrent neural network, is utilized to automatically extract characteristics from the infrared signal and build the recognition model. In addition, the real-time HAR interface is designed by embedding the LSTM model. Experimental results show that the typical daily activities can be classified with the recognition accuracy of 98.287%. The proposed approach yields a better result compared to the existing machine learning methods, and it provides a low-cost yet promising solution for privacy-preserving scenarios.