Cargando…
Automatic Detection of Atrial Fibrillation in ECG Using Co-Occurrence Patterns of Dynamic Symbol Assignment and Machine Learning
Early detection of atrial fibrillation from electrocardiography (ECG) plays a vital role in the timely prevention and diagnosis of cardiovascular diseases. Various algorithms have been proposed; however, they are lacking in considering varied-length signals, morphological transitions, and abnormalit...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161329/ https://www.ncbi.nlm.nih.gov/pubmed/34069717 http://dx.doi.org/10.3390/s21103542 |
Sumario: | Early detection of atrial fibrillation from electrocardiography (ECG) plays a vital role in the timely prevention and diagnosis of cardiovascular diseases. Various algorithms have been proposed; however, they are lacking in considering varied-length signals, morphological transitions, and abnormalities over long-term recordings. We propose dynamic symbolic assignment (DSA) to differentiate a normal sinus rhythm (SR) from paroxysmal atrial fibrillation (PAF). We use ECG signals and their interbeat (RR) intervals from two public databases namely, AF Prediction Challenge Database (AFPDB) and AF Termination Challenge Database (AFTDB). We transform RR intervals into a symbolic representation and compute co-occurrence matrices. The DSA feature is extracted using varied symbol-length [Formula: see text] , word-size [Formula: see text] , and applied to five machine learning algorithms for classification. We test five hypotheses: (i) DSA captures the dynamics of the series, (ii) DSA is a reliable technique for various databases, (iii) optimal parameters improve DSA’s performance, (iv) DSA is consistent for variable signal lengths, and (v) DSA supports cross-data analysis. Our method captures the transition patterns of the RR intervals. The DSA feature exhibit a statistically significant difference in SR and PAF conditions (p < 0.005). The DSA feature with [Formula: see text] and [Formula: see text] yield maximum performance. In terms of F-measure (F), rotation forest and ensemble learning classifier are the most accurate for AFPDB (F = 94.6%) and AFTDB (F = 99.8%). Our method is effective for short-length signals and supports cross-data analysis. The DSA is capable of capturing the dynamics of varied-lengths ECG signals. Particularly, the optimal parameters-based DSA feature and ensemble learning could help to detect PAF in long-term ECG signals. Our method maps time series into a symbolic representation and identifies abnormalities in noisy, varied-length, and pathological ECG signals. |
---|