Cargando…
Automatic Detection of Atrial Fibrillation in ECG Using Co-Occurrence Patterns of Dynamic Symbol Assignment and Machine Learning
Early detection of atrial fibrillation from electrocardiography (ECG) plays a vital role in the timely prevention and diagnosis of cardiovascular diseases. Various algorithms have been proposed; however, they are lacking in considering varied-length signals, morphological transitions, and abnormalit...
Autores principales: | Ganapathy, Nagarajan, Baumgärtel, Diana, Deserno, Thomas M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161329/ https://www.ncbi.nlm.nih.gov/pubmed/34069717 http://dx.doi.org/10.3390/s21103542 |
Ejemplares similares
-
Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy
por: Zhou, Xiaolin, et al.
Publicado: (2014) -
Printed and Flexible ECG Electrodes Attached to the Steering Wheel for Continuous Health Monitoring during Driving
por: Warnecke, Joana M., et al.
Publicado: (2022) -
Automated Atrial Fibrillation Detection with ECG
por: Wei, Ting-Ruen, et al.
Publicado: (2022) -
Automatic Detection of Atrial Fibrillation from Single-Lead ECG Using Deep Learning of the Cardiac Cycle
por: Dubatovka, Alina, et al.
Publicado: (2022) -
Symbolic Recurrence Analysis of RR Interval to Detect Atrial Fibrillation
por: Pérez-Valero, Jesús, et al.
Publicado: (2019)