Cargando…
Contrastive Learning for Fault Detection and Diagnostics in the Context of Changing Operating Conditions and Novel Fault Types
Reliable fault detection and diagnostics are crucial in order to ensure efficient operations in industrial assets. Data-driven solutions have shown great potential in various fields but pose many challenges in Prognostics and Health Management (PHM) applications: Changing external in-service factors...
Autores principales: | Rombach, Katharina, Michau, Gabriel, Fink, Olga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161334/ https://www.ncbi.nlm.nih.gov/pubmed/34065164 http://dx.doi.org/10.3390/s21103550 |
Ejemplares similares
-
CAFD: Context-Aware Fault Diagnostic Scheme towards Sensor Faults Utilizing Machine Learning
por: Saeed, Umer, et al.
Publicado: (2021) -
Diagnostic of Operation Conditions and Sensor Faults Using Machine Learning in Sucker-Rod Pumping Wells
por: Nascimento, João, et al.
Publicado: (2021) -
Fault detection and fault-tolerant control for nonlinear systems
por: Li, Linlin
Publicado: (2016) -
Actuator Fault Detection and Fault-Tolerant Control for Hexacopter
por: Nguyen, Ngoc Phi, et al.
Publicado: (2019) -
Dueling dynamics of low-angle normal fault rupture with splay faulting and off-fault damage
por: Biemiller, J., et al.
Publicado: (2023)