Cargando…
Approaches for the Prediction of Leaf Wetness Duration with Machine Learning
The prediction of leaf wetness duration (LWD) is an issue of interest for disease prevention in coffee plantations, forests, and other crops. This study analyzed different LWD prediction approaches using machine learning and meteorological and temporal variables as the models’ input. The information...
Autores principales: | Solís, Martín, Rojas-Herrera, Vanessa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161455/ https://www.ncbi.nlm.nih.gov/pubmed/34069181 http://dx.doi.org/10.3390/biomimetics6020029 |
Ejemplares similares
-
Imaging and Deep Learning Based Approach to Leaf Wetness Detection in Strawberry
por: Patel, Arth M., et al.
Publicado: (2022) -
Effects of leaf wetness duration and temperature on infection of Prunus by Xanthomonas arboricola pv. pruni
por: Morales, Gerard, et al.
Publicado: (2018) -
Effects of Leaf Wetness Duration, Temperature, and Host Phenological Stage on Infection of Walnut by Xanthomonas arboricola pv. juglandis
por: Moragrega, Concepció, et al.
Publicado: (2023) -
Wet and dry extremes reduce arthropod biomass independently of leaf phenology in the wet tropics
por: Newell, Felicity L., et al.
Publicado: (2022) -
“Breath figures” on leaf surfaces—formation and effects of microscopic leaf wetness
por: Burkhardt, Juergen, et al.
Publicado: (2013)