Cargando…

MicroRNA-186-3p attenuates tumorigenesis of cervical cancer by targeting MCM2

The present study examined the effect of microRNA (miRNA/miR)-186-3p and its target gene, minichromosome maintenance complex component 2 (MCM2), on cervical cancer. Cervical cancer tissues and corresponding normal tissues were collected from 48 patients and bioinformatics analysis was performed to i...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Xiurong, Song, Xiao, Hao, Xiaohui, Liu, Xiaoyu, Zhang, Xianyu, Yuan, Na, Ma, Huan, Zhang, Zhilin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161468/
https://www.ncbi.nlm.nih.gov/pubmed/34084218
http://dx.doi.org/10.3892/ol.2021.12800
Descripción
Sumario:The present study examined the effect of microRNA (miRNA/miR)-186-3p and its target gene, minichromosome maintenance complex component 2 (MCM2), on cervical cancer. Cervical cancer tissues and corresponding normal tissues were collected from 48 patients and bioinformatics analysis was performed to identify the differentially expressed genes in cervical cancer. TargetScan and TarBase were used to identify miRNAs, and reverse transcription-quantitative PCR was conducted to detect and evaluate mRNA expression levels. Additionally, MTT and 5-bromo-2-deoxyuridine assays were performed to examine cell proliferation. Cell adhesion, cell cycle distribution and apoptosis were assessed using cell adhesion, flow cytometry and caspase-3/7 activity assays, respectively. The results revealed that miR-186-3p expression was downregulated in cervical cancer tissues and cells, and it negatively regulated MCM2 expression by directly targeting its 3′ untranslated region in cervical cancer. Furthermore, MCM2 facilitated cell proliferation and inhibited cell apoptosis, which were reversed by upregulation of miR-186-3p expression. Collectively, the present study suggested that MCM2 and its negative regulator, miR-186-3p, regulate cervical cancer progression.