Cargando…

A machine learning platform for the discovery of materials

For photovoltaic materials, properties such as band gap [Formula: see text] are critical indicators of the material’s suitability to perform a desired function. Calculating [Formula: see text] is often performed using Density Functional Theory (DFT) methods, although more accurate calculation are pe...

Descripción completa

Detalles Bibliográficos
Autores principales: Belle, Carl E., Aksakalli, Vural, Russo, Salvy P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161632/
https://www.ncbi.nlm.nih.gov/pubmed/34044889
http://dx.doi.org/10.1186/s13321-021-00518-y
Descripción
Sumario:For photovoltaic materials, properties such as band gap [Formula: see text] are critical indicators of the material’s suitability to perform a desired function. Calculating [Formula: see text] is often performed using Density Functional Theory (DFT) methods, although more accurate calculation are performed using methods such as the GW approximation. DFT software often used to compute electronic properties includes applications such as VASP, CRYSTAL, CASTEP or Quantum Espresso. Depending on the unit cell size and symmetry of the material, these calculations can be computationally expensive. In this study, we present a new machine learning platform for the accurate prediction of properties such as [Formula: see text] of a wide range of materials.