Cargando…
A machine learning platform for the discovery of materials
For photovoltaic materials, properties such as band gap [Formula: see text] are critical indicators of the material’s suitability to perform a desired function. Calculating [Formula: see text] is often performed using Density Functional Theory (DFT) methods, although more accurate calculation are pe...
Autores principales: | Belle, Carl E., Aksakalli, Vural, Russo, Salvy P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161632/ https://www.ncbi.nlm.nih.gov/pubmed/34044889 http://dx.doi.org/10.1186/s13321-021-00518-y |
Ejemplares similares
-
Naturally-meaningful and efficient descriptors: machine learning of material properties based on robust one-shot ab initio descriptors
por: Tawfik, Sherif Abdulkader, et al.
Publicado: (2022) -
Materials Discovery With Machine Learning and Knowledge Discovery
por: Oliveira, Osvaldo N., et al.
Publicado: (2022) -
Machine learning-driven new material discovery
por: Cai, Jiazhen, et al.
Publicado: (2020) -
Machine-learning guided discovery of a new thermoelectric material
por: Iwasaki, Yuma, et al.
Publicado: (2019) -
Feature Selection in Machine Learning for Perovskite Materials Design and Discovery
por: Wang, Junya, et al.
Publicado: (2023)