Cargando…
Quantum-mechanical transition-state model combined with machine learning provides catalyst design features for selective Cr olefin oligomerization
The use of data science tools to provide the emergence of non-trivial chemical features for catalyst design is an important goal in catalysis science. Additionally, there is currently no general strategy for computational homogeneous, molecular catalyst design. Here, we report the unique combination...
Autores principales: | Maley, Steven M., Kwon, Doo-Hyun, Rollins, Nick, Stanley, Johnathan C., Sydora, Orson L., Bischof, Steven M., Ess, Daniel H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161675/ https://www.ncbi.nlm.nih.gov/pubmed/34094231 http://dx.doi.org/10.1039/d0sc03552a |
Ejemplares similares
-
The activity of indenylidene derivatives in olefin metathesis catalysts
por: Voccia, Maria, et al.
Publicado: (2018) -
Olefin oligomerization by main group Ga(3+) and Zn(2+) single site catalysts on SiO(2)
por: LiBretto, Nicole J., et al.
Publicado: (2021) -
Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO(x)/AlPO-18 bifunctional catalysts
por: Su, Junjie, et al.
Publicado: (2019) -
Fair Look at Coordination Oligomerization of Higher α-Olefins
por: Nifant’ev, Ilya, et al.
Publicado: (2020) -
MAO- and Borate-Free Activating Supports for Group 4 Metallocene and Post-Metallocene Catalysts of α-Olefin Polymerization and Oligomerization
por: Nifant’ev, Ilya E., et al.
Publicado: (2023)