Cargando…

Cost-Effectiveness Analysis of Stereotactic Ablative Body Radiotherapy for the Treatment of Oligometastatic Tumors versus Standard of Care

Background: Recent clinical trial results reported that stereotactic radiotherapy (SABR) may improve survival for patients with oligometastatic (OM) cancer. Given that these results come from a phase II trial, there remains considerable uncertainty about this finding, and about the cost-effectivenes...

Descripción completa

Detalles Bibliográficos
Autores principales: Raymakers, Adam J. N., Cameron, David, Tyldesley, Scott, Regier, Dean A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161824/
https://www.ncbi.nlm.nih.gov/pubmed/34068400
http://dx.doi.org/10.3390/curroncol28030172
Descripción
Sumario:Background: Recent clinical trial results reported that stereotactic radiotherapy (SABR) may improve survival for patients with oligometastatic (OM) cancer. Given that these results come from a phase II trial, there remains considerable uncertainty about this finding, and about the cost-effectiveness of SABR for patients with OM cancer. In this analysis, we estimate the cost-effectiveness of SABR for oligometastatic cancer patients. Methods: A probabilistic time-dependent Markov model was constructed to simulate treatment of oligometastatic cancer patients over five- and ten-year time horizons. The primary data source was the phase II, Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of Oligometastases (SABR-COMET )trial and supplemented with data from the literature. We estimated the effect of SABR and the standard of care (SoC) using quality-adjusted life-years (QALYs). Costs were measured from a provincial payer perspective (2018 Canadian dollars). Results: In the reference case analysis (five-year time horizon), SABR was associated with additional incremental costs of CAD 38,487 and an incremental QALY gain of 0.84. This resulted in an incremental cost-effectiveness ratio (ICER) of CAD 45,726 per QALY gained. Over a ten-year time horizon, the increased uncertainty in the long-term effectiveness of SABR resulted in an ICER of CAD 291,544 per QALY gained. Estimates from the probabilistic analysis indicated that at a willingness-to-pay (WTP) threshold of CAD 50,000 and CAD 100,000 per QALY gained, there is 54% and 78% probability (respectively) that SABR would be cost-effective using the five-year time horizon. Conclusions: The adoption of SABR therapy requires a considerable upfront capital investment. Our results suggest that the cost-effectiveness of SABR is contingent on the uncertainty in the evidence base. Further clinical trials to confirm the effectiveness of SABR and research into the real-world costs associated with this treatment could reduce the uncertainty around implementation of the technology.