Cargando…
SMILE: systems metabolomics using interpretable learning and evolution
BACKGROUND: Direct link between metabolism and cell and organism phenotype in health and disease makes metabolomics, a high throughput study of small molecular metabolites, an essential methodology for understanding and diagnosing disease development and progression. Machine learning methods have se...
Autores principales: | Sha, Chengyuan, Cuperlovic-Culf, Miroslava, Hu, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161935/ https://www.ncbi.nlm.nih.gov/pubmed/34049495 http://dx.doi.org/10.1186/s12859-021-04209-1 |
Ejemplares similares
-
Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling
por: Cuperlovic-Culf, Miroslava
Publicado: (2018) -
Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites
por: Cuperlovic-Culf, Miroslava, et al.
Publicado: (2016) -
Leveraging Metabolomics to Assess the Next Generation of Temozolomide-based Therapeutic Approaches for Glioblastomas
por: St-Coeur, Patrick-Denis, et al.
Publicado: (2013) -
Database of resistance related metabolites in Wheat Fusarium head blight Disease (MWFD)
por: Surendra, Anuradha, et al.
Publicado: (2017) -
MetaboHunter: an automatic approach for identification of metabolites from (1)H-NMR spectra of complex mixtures
por: Tulpan, Dan, et al.
Publicado: (2011)