Cargando…

Effects of isoflurane and sevoflurane alone and in combination with butorphanol or medetomidine on the bispectral index in chickens

BACKGROUND: The bispectral index (BIS) is an anaesthesia monitoring technique able to assess the level of central nervous system depression in humans and various animal species. In birds, it has been validated in chickens undergoing isoflurane anaesthesia. The aim of this study was to evaluate in an...

Descripción completa

Detalles Bibliográficos
Autores principales: Velasco Gallego, Maria Luisa, Martin Jurado, Olga, Hatt, Jean-Michel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161974/
https://www.ncbi.nlm.nih.gov/pubmed/34049559
http://dx.doi.org/10.1186/s12917-021-02895-w
Descripción
Sumario:BACKGROUND: The bispectral index (BIS) is an anaesthesia monitoring technique able to assess the level of central nervous system depression in humans and various animal species. In birds, it has been validated in chickens undergoing isoflurane anaesthesia. The aim of this study was to evaluate in an avian species the influence of isoflurane and sevoflurane on BIS, each at different minimum anaesthetic concentrations (MAC) multiples, alone or combined with butorphanol or medetomidine. Ten chickens (5 males and 5 females) underwent general anaesthesia with isoflurane or sevoflurane alone, and combined with either intramuscular administration of butorphanol (1 mg/kg) or medetomidine (0.1 mg/kg), in a prospective and cross-over study (i.e., 6 treatments per animal). BIS measurements were compared to heart rate (HR), non-invasive blood pressure (NIBP) and to a visual analogue scale (VAS) of anaesthesia depth. RESULTS: HR was significantly increased, and both NIBP and VAS were significantly reduced, with higher gas concentrations. NIBP (but not HR or VAS) was additionally affected by the type of gas, being lower at higher concentrations of sevoflurane. Butorphanol had no additional effect, but medetomidine led to differences in HR, NIBP, and in particular a reduction in VAS. With respect to deeper level of hypnosis at higher concentrations and the absence of difference between gases, BIS measurements correlated with all other measures (except with HR, where no significant relationship was found) The difference in BIS before (BISpre) and after stimulation (BISpost) did not remain constant, but increased with increasing MAC multiples, indicating that the BISpost is not suppressed proportionately to the suppression of the BISpre values due to gas concentration. Furthermore, neither butorphanol nor medetomidine affected the BIS. CONCLUSIONS: The difference of degree of central nervous system depression monitored by BIS compared with neuromuscular reflexes monitored by VAS, indicate that BIS records a level of anaesthetic depth different from the one deducted from VAS monitoring alone. BIS provided complementary information such as that medetomidine suppressed spinal reflexes without deepening the hypnotic state. As a consequence, it is concluded that BIS improves the assessment of the level of hypnosis in chickens, improving anaesthesia monitoring and anaesthesia quality in this species.