Cargando…

Spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes

Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans-azobenzene (t-Az) and several alkyl-substituted t-Az derivatives encapsulated in a water-soluble supramolecular host–guest complex. Encapsulation increases the excited-state lifetimes and alt...

Descripción completa

Detalles Bibliográficos
Autores principales: Otolski, Christopher J., Raj, A. Mohan, Ramamurthy, Vaidhyanathan, Elles, Christopher G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162038/
https://www.ncbi.nlm.nih.gov/pubmed/34094217
http://dx.doi.org/10.1039/d0sc03955a
_version_ 1783700632839913472
author Otolski, Christopher J.
Raj, A. Mohan
Ramamurthy, Vaidhyanathan
Elles, Christopher G.
author_facet Otolski, Christopher J.
Raj, A. Mohan
Ramamurthy, Vaidhyanathan
Elles, Christopher G.
author_sort Otolski, Christopher J.
collection PubMed
description Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans-azobenzene (t-Az) and several alkyl-substituted t-Az derivatives encapsulated in a water-soluble supramolecular host–guest complex. Encapsulation increases the excited-state lifetimes and alters the yields of the trans → cis photoisomerization reaction compared with solution. Kinetic modeling of the transient spectra for unsubstituted t-Az following nπ* and ππ* excitation reveals steric trapping of excited-state species, as well as an adiabatic excited-state trans → cis isomerization pathway for confined molecules that is not observed in solution. Analysis of the transient spectra following ππ* excitation for a series of 4-alkyl and 4,4′-dialkyl substituted t-Az molecules suggests that additional crowding due to lengthening of the alkyl tails results in deeper trapping of the excited-state species, including distorted trans and cis structures. The variation of the dynamics due to crowding in the confined environment provides new evidence to explain the violation of Kasha's rule for nπ* and ππ* excitation of azobenzenes based on competition between in-plane inversion and out-of-plane rotation channels.
format Online
Article
Text
id pubmed-8162038
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-81620382021-06-04 Spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes Otolski, Christopher J. Raj, A. Mohan Ramamurthy, Vaidhyanathan Elles, Christopher G. Chem Sci Chemistry Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans-azobenzene (t-Az) and several alkyl-substituted t-Az derivatives encapsulated in a water-soluble supramolecular host–guest complex. Encapsulation increases the excited-state lifetimes and alters the yields of the trans → cis photoisomerization reaction compared with solution. Kinetic modeling of the transient spectra for unsubstituted t-Az following nπ* and ππ* excitation reveals steric trapping of excited-state species, as well as an adiabatic excited-state trans → cis isomerization pathway for confined molecules that is not observed in solution. Analysis of the transient spectra following ππ* excitation for a series of 4-alkyl and 4,4′-dialkyl substituted t-Az molecules suggests that additional crowding due to lengthening of the alkyl tails results in deeper trapping of the excited-state species, including distorted trans and cis structures. The variation of the dynamics due to crowding in the confined environment provides new evidence to explain the violation of Kasha's rule for nπ* and ππ* excitation of azobenzenes based on competition between in-plane inversion and out-of-plane rotation channels. The Royal Society of Chemistry 2020-08-24 /pmc/articles/PMC8162038/ /pubmed/34094217 http://dx.doi.org/10.1039/d0sc03955a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Otolski, Christopher J.
Raj, A. Mohan
Ramamurthy, Vaidhyanathan
Elles, Christopher G.
Spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes
title Spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes
title_full Spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes
title_fullStr Spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes
title_full_unstemmed Spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes
title_short Spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes
title_sort spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162038/
https://www.ncbi.nlm.nih.gov/pubmed/34094217
http://dx.doi.org/10.1039/d0sc03955a
work_keys_str_mv AT otolskichristopherj spatialconfinementalterstheultrafastphotoisomerizationdynamicsofazobenzenes
AT rajamohan spatialconfinementalterstheultrafastphotoisomerizationdynamicsofazobenzenes
AT ramamurthyvaidhyanathan spatialconfinementalterstheultrafastphotoisomerizationdynamicsofazobenzenes
AT elleschristopherg spatialconfinementalterstheultrafastphotoisomerizationdynamicsofazobenzenes