Cargando…
Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans
Glycosaminoglycans (GAGs) are biomacromolecules necessary for the regulation of different biological functions. In medicine, GAGs are important commercial therapeutics widely used for the treatment of thrombosis, inflammation, osteoarthritis and wound healing. However, protocols for the encapsulatio...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162298/ https://www.ncbi.nlm.nih.gov/pubmed/34094337 http://dx.doi.org/10.1039/d0sc01204a |
_version_ | 1783700681423585280 |
---|---|
author | Velásquez-Hernández, Miriam de J. Astria, Efwita Winkler, Sarah Liang, Weibin Wiltsche, Helmar Poddar, Arpita Shukla, Ravi Prestwich, Glenn Paderi, John Salcedo-Abraira, Pablo Amenitsch, Heinz Horcajada, Patricia Doonan, Christian J. Falcaro, Paolo |
author_facet | Velásquez-Hernández, Miriam de J. Astria, Efwita Winkler, Sarah Liang, Weibin Wiltsche, Helmar Poddar, Arpita Shukla, Ravi Prestwich, Glenn Paderi, John Salcedo-Abraira, Pablo Amenitsch, Heinz Horcajada, Patricia Doonan, Christian J. Falcaro, Paolo |
author_sort | Velásquez-Hernández, Miriam de J. |
collection | PubMed |
description | Glycosaminoglycans (GAGs) are biomacromolecules necessary for the regulation of different biological functions. In medicine, GAGs are important commercial therapeutics widely used for the treatment of thrombosis, inflammation, osteoarthritis and wound healing. However, protocols for the encapsulation of GAGs in MOFs carriers are not yet available. Here, we successfully encapsulated GAG-based clinical drugs (heparin, hyaluronic acid, chondroitin sulfate, dermatan sulfate) and two new biotherapeutics in preclinical stage (GM-1111 and HepSYL proteoglycan) in three different pH-responsive metal-azolate frameworks (ZIF-8, ZIF-90, and MAF-7). The resultant GAG@MOF biocomposites present significant differences in terms of crystallinity, particle size, and spatial distribution of the cargo, which influences the drug-release kinetics upon applying an acidic stimulus. For a selected system, heparin@MOF, the released therapeutic retained its antithrombotic activity while the MOF shell effectively protects the drug from heparin lyase. By using different MOF shells, the present approach enables the preparation of GAG-based biocomposites with tunable properties such as encapsulation efficiency, protection and release. |
format | Online Article Text |
id | pubmed-8162298 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-81622982021-06-04 Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans Velásquez-Hernández, Miriam de J. Astria, Efwita Winkler, Sarah Liang, Weibin Wiltsche, Helmar Poddar, Arpita Shukla, Ravi Prestwich, Glenn Paderi, John Salcedo-Abraira, Pablo Amenitsch, Heinz Horcajada, Patricia Doonan, Christian J. Falcaro, Paolo Chem Sci Chemistry Glycosaminoglycans (GAGs) are biomacromolecules necessary for the regulation of different biological functions. In medicine, GAGs are important commercial therapeutics widely used for the treatment of thrombosis, inflammation, osteoarthritis and wound healing. However, protocols for the encapsulation of GAGs in MOFs carriers are not yet available. Here, we successfully encapsulated GAG-based clinical drugs (heparin, hyaluronic acid, chondroitin sulfate, dermatan sulfate) and two new biotherapeutics in preclinical stage (GM-1111 and HepSYL proteoglycan) in three different pH-responsive metal-azolate frameworks (ZIF-8, ZIF-90, and MAF-7). The resultant GAG@MOF biocomposites present significant differences in terms of crystallinity, particle size, and spatial distribution of the cargo, which influences the drug-release kinetics upon applying an acidic stimulus. For a selected system, heparin@MOF, the released therapeutic retained its antithrombotic activity while the MOF shell effectively protects the drug from heparin lyase. By using different MOF shells, the present approach enables the preparation of GAG-based biocomposites with tunable properties such as encapsulation efficiency, protection and release. The Royal Society of Chemistry 2020-07-14 /pmc/articles/PMC8162298/ /pubmed/34094337 http://dx.doi.org/10.1039/d0sc01204a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Velásquez-Hernández, Miriam de J. Astria, Efwita Winkler, Sarah Liang, Weibin Wiltsche, Helmar Poddar, Arpita Shukla, Ravi Prestwich, Glenn Paderi, John Salcedo-Abraira, Pablo Amenitsch, Heinz Horcajada, Patricia Doonan, Christian J. Falcaro, Paolo Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans |
title | Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans |
title_full | Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans |
title_fullStr | Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans |
title_full_unstemmed | Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans |
title_short | Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans |
title_sort | modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162298/ https://www.ncbi.nlm.nih.gov/pubmed/34094337 http://dx.doi.org/10.1039/d0sc01204a |
work_keys_str_mv | AT velasquezhernandezmiriamdej modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans AT astriaefwita modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans AT winklersarah modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans AT liangweibin modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans AT wiltschehelmar modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans AT poddararpita modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans AT shuklaravi modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans AT prestwichglenn modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans AT paderijohn modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans AT salcedoabrairapablo modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans AT amenitschheinz modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans AT horcajadapatricia modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans AT doonanchristianj modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans AT falcaropaolo modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans |