Cargando…

Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans

Glycosaminoglycans (GAGs) are biomacromolecules necessary for the regulation of different biological functions. In medicine, GAGs are important commercial therapeutics widely used for the treatment of thrombosis, inflammation, osteoarthritis and wound healing. However, protocols for the encapsulatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Velásquez-Hernández, Miriam de J., Astria, Efwita, Winkler, Sarah, Liang, Weibin, Wiltsche, Helmar, Poddar, Arpita, Shukla, Ravi, Prestwich, Glenn, Paderi, John, Salcedo-Abraira, Pablo, Amenitsch, Heinz, Horcajada, Patricia, Doonan, Christian J., Falcaro, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162298/
https://www.ncbi.nlm.nih.gov/pubmed/34094337
http://dx.doi.org/10.1039/d0sc01204a
_version_ 1783700681423585280
author Velásquez-Hernández, Miriam de J.
Astria, Efwita
Winkler, Sarah
Liang, Weibin
Wiltsche, Helmar
Poddar, Arpita
Shukla, Ravi
Prestwich, Glenn
Paderi, John
Salcedo-Abraira, Pablo
Amenitsch, Heinz
Horcajada, Patricia
Doonan, Christian J.
Falcaro, Paolo
author_facet Velásquez-Hernández, Miriam de J.
Astria, Efwita
Winkler, Sarah
Liang, Weibin
Wiltsche, Helmar
Poddar, Arpita
Shukla, Ravi
Prestwich, Glenn
Paderi, John
Salcedo-Abraira, Pablo
Amenitsch, Heinz
Horcajada, Patricia
Doonan, Christian J.
Falcaro, Paolo
author_sort Velásquez-Hernández, Miriam de J.
collection PubMed
description Glycosaminoglycans (GAGs) are biomacromolecules necessary for the regulation of different biological functions. In medicine, GAGs are important commercial therapeutics widely used for the treatment of thrombosis, inflammation, osteoarthritis and wound healing. However, protocols for the encapsulation of GAGs in MOFs carriers are not yet available. Here, we successfully encapsulated GAG-based clinical drugs (heparin, hyaluronic acid, chondroitin sulfate, dermatan sulfate) and two new biotherapeutics in preclinical stage (GM-1111 and HepSYL proteoglycan) in three different pH-responsive metal-azolate frameworks (ZIF-8, ZIF-90, and MAF-7). The resultant GAG@MOF biocomposites present significant differences in terms of crystallinity, particle size, and spatial distribution of the cargo, which influences the drug-release kinetics upon applying an acidic stimulus. For a selected system, heparin@MOF, the released therapeutic retained its antithrombotic activity while the MOF shell effectively protects the drug from heparin lyase. By using different MOF shells, the present approach enables the preparation of GAG-based biocomposites with tunable properties such as encapsulation efficiency, protection and release.
format Online
Article
Text
id pubmed-8162298
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-81622982021-06-04 Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans Velásquez-Hernández, Miriam de J. Astria, Efwita Winkler, Sarah Liang, Weibin Wiltsche, Helmar Poddar, Arpita Shukla, Ravi Prestwich, Glenn Paderi, John Salcedo-Abraira, Pablo Amenitsch, Heinz Horcajada, Patricia Doonan, Christian J. Falcaro, Paolo Chem Sci Chemistry Glycosaminoglycans (GAGs) are biomacromolecules necessary for the regulation of different biological functions. In medicine, GAGs are important commercial therapeutics widely used for the treatment of thrombosis, inflammation, osteoarthritis and wound healing. However, protocols for the encapsulation of GAGs in MOFs carriers are not yet available. Here, we successfully encapsulated GAG-based clinical drugs (heparin, hyaluronic acid, chondroitin sulfate, dermatan sulfate) and two new biotherapeutics in preclinical stage (GM-1111 and HepSYL proteoglycan) in three different pH-responsive metal-azolate frameworks (ZIF-8, ZIF-90, and MAF-7). The resultant GAG@MOF biocomposites present significant differences in terms of crystallinity, particle size, and spatial distribution of the cargo, which influences the drug-release kinetics upon applying an acidic stimulus. For a selected system, heparin@MOF, the released therapeutic retained its antithrombotic activity while the MOF shell effectively protects the drug from heparin lyase. By using different MOF shells, the present approach enables the preparation of GAG-based biocomposites with tunable properties such as encapsulation efficiency, protection and release. The Royal Society of Chemistry 2020-07-14 /pmc/articles/PMC8162298/ /pubmed/34094337 http://dx.doi.org/10.1039/d0sc01204a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Velásquez-Hernández, Miriam de J.
Astria, Efwita
Winkler, Sarah
Liang, Weibin
Wiltsche, Helmar
Poddar, Arpita
Shukla, Ravi
Prestwich, Glenn
Paderi, John
Salcedo-Abraira, Pablo
Amenitsch, Heinz
Horcajada, Patricia
Doonan, Christian J.
Falcaro, Paolo
Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans
title Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans
title_full Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans
title_fullStr Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans
title_full_unstemmed Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans
title_short Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans
title_sort modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162298/
https://www.ncbi.nlm.nih.gov/pubmed/34094337
http://dx.doi.org/10.1039/d0sc01204a
work_keys_str_mv AT velasquezhernandezmiriamdej modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans
AT astriaefwita modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans
AT winklersarah modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans
AT liangweibin modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans
AT wiltschehelmar modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans
AT poddararpita modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans
AT shuklaravi modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans
AT prestwichglenn modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans
AT paderijohn modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans
AT salcedoabrairapablo modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans
AT amenitschheinz modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans
AT horcajadapatricia modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans
AT doonanchristianj modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans
AT falcaropaolo modulationofmetalazolateframeworksforthetunablereleaseofencapsulatedglycosaminoglycans