Cargando…
Design and synthesis of chiral and regenerable [2.2]paracyclophane-based NAD(P)H models and application in biomimetic reduction of flavonoids
With the rapid development of biomimetic asymmetric reduction, the demand for efficient chiral and regenerable NAD(P)H models is growing rapidly. Herein, a new class of [2.2]paracyclophane-based chiral and regenerable NAD(P)H models (CYNAMs) was designed and synthesized. The first enantioselective b...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162316/ https://www.ncbi.nlm.nih.gov/pubmed/34094287 http://dx.doi.org/10.1039/d0sc04188b |
Sumario: | With the rapid development of biomimetic asymmetric reduction, the demand for efficient chiral and regenerable NAD(P)H models is growing rapidly. Herein, a new class of [2.2]paracyclophane-based chiral and regenerable NAD(P)H models (CYNAMs) was designed and synthesized. The first enantioselective biomimetic reduction of tetrasubstituted alkene flavonoids has been successfully realized through enzyme-like cooperative bifunctional activation, giving chiral flavanones with up to 99% yield and 99% ee. |
---|