Cargando…
Predicting of the Coronavirus Disease 2019 (COVID-19) Epidemic Using Estimation of Parameters in the Logistic Growth Model
The COVID-19 pandemic was impacting the health and economy around the world. All countries have taken measures to control the spread of the epidemic. Because it is not known when the epidemic will end in several countries, then the prediction of the COVID-19 pandemic is a very important challenge. T...
Autores principales: | Kartono, Agus, Wahyudi, Setyanto Tri, Setiawan, Ardian Arif, Sofian, Irmansyah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162364/ https://www.ncbi.nlm.nih.gov/pubmed/34073942 http://dx.doi.org/10.3390/idr13020046 |
Ejemplares similares
-
Forecasting the Long-Term Trends of Coronavirus Disease 2019 (COVID-19) Epidemic Using the Susceptible-Infectious-Recovered (SIR) Model
por: Kartono, Agus, et al.
Publicado: (2021) -
iVaccine-Deep: Prediction of COVID-19 mRNA vaccine degradation using deep learning
por: Muneer, Amgad, et al.
Publicado: (2022) -
Fast Bayesian parameter estimation for stochastic logistic growth models
por: Heydari, Jonathan, et al.
Publicado: (2014) -
Mechanistic insight on the remdesivir binding to RNA-Dependent RNA polymerase (RdRp) of SARS-cov-2
por: Arba, Muhammad, et al.
Publicado: (2021) -
Novel coronavirus 2019-nCoV (COVID-19): early estimation of epidemiological parameters and epidemic size estimates
por: Read, Jonathan M., et al.
Publicado: (2021)