Cargando…
Hierarchical nanosheets built from superatomic clusters: properties, exfoliation and single-crystal-to-single-crystal intercalation
Tuning the properties of atomic crystals in the two-dimensional (2D) limit is synthetically challenging, but critical to unlock their potential in fundamental research and nanotechnology alike. 2D crystals assembled using superatomic blocks could provide a route to encrypt desirable functionality, y...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162370/ https://www.ncbi.nlm.nih.gov/pubmed/34094327 http://dx.doi.org/10.1039/d0sc03506h |
_version_ | 1783700697809682432 |
---|---|
author | Kephart, Jonathan A. Romero, Catherine G. Tseng, Chun-Chih Anderton, Kevin J. Yankowitz, Matthew Kaminsky, Werner Velian, Alexandra |
author_facet | Kephart, Jonathan A. Romero, Catherine G. Tseng, Chun-Chih Anderton, Kevin J. Yankowitz, Matthew Kaminsky, Werner Velian, Alexandra |
author_sort | Kephart, Jonathan A. |
collection | PubMed |
description | Tuning the properties of atomic crystals in the two-dimensional (2D) limit is synthetically challenging, but critical to unlock their potential in fundamental research and nanotechnology alike. 2D crystals assembled using superatomic blocks could provide a route to encrypt desirable functionality, yet strategies to link the inorganic blocks together in predetermined dimensionality or symmetry are scarce. Here, we describe the synthesis of anisotropic van der Waals crystalline frameworks using the designer superatomic nanocluster Co(3)(py)(3)Co(6)Se(8)L(6) (py = pyridine, L = Ph(2)PN(Tol)), and ditopic linkers. Post-synthetically, the 3D crystals can be mechanically exfoliated into ultrathin flakes (8 to 60 nm), or intercalated with the redox-active guest tetracyanoethylene in a single-crystal-to-single-crystal transformation. Extensive characterization, including by single crystal X-ray diffraction, reveals how intrinsic features of the nanocluster, such as its structure, chirality, redox-activity and magnetic profile, predetermine key properties of the emerging 2D structures. Within the nanosheets, the strict and unusual stereoselectivity of the nanocluster's Co edges for the low symmetry (α,α,β) isomer gives rise to in-plane structural anisotropy, while the helically chiral nanoclusters self-organize into alternating Δ- and Λ-homochiral rows. The nanocluster's high-spin Co edges, and its rich redox profile make the nanosheets both magnetically and electrochemically active, as revealed by solid state magnetic and cyclic voltammetry studies. The length and flexibility of the ditopic linker was varied, and found to have a secondary effect on the structure and stacking of the nanosheets within the 3D crystals. With these results we introduce a deterministic and versatile synthetic entry to programmable functionality and symmetry in 2D superatomic crystals. |
format | Online Article Text |
id | pubmed-8162370 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-81623702021-06-04 Hierarchical nanosheets built from superatomic clusters: properties, exfoliation and single-crystal-to-single-crystal intercalation Kephart, Jonathan A. Romero, Catherine G. Tseng, Chun-Chih Anderton, Kevin J. Yankowitz, Matthew Kaminsky, Werner Velian, Alexandra Chem Sci Chemistry Tuning the properties of atomic crystals in the two-dimensional (2D) limit is synthetically challenging, but critical to unlock their potential in fundamental research and nanotechnology alike. 2D crystals assembled using superatomic blocks could provide a route to encrypt desirable functionality, yet strategies to link the inorganic blocks together in predetermined dimensionality or symmetry are scarce. Here, we describe the synthesis of anisotropic van der Waals crystalline frameworks using the designer superatomic nanocluster Co(3)(py)(3)Co(6)Se(8)L(6) (py = pyridine, L = Ph(2)PN(Tol)), and ditopic linkers. Post-synthetically, the 3D crystals can be mechanically exfoliated into ultrathin flakes (8 to 60 nm), or intercalated with the redox-active guest tetracyanoethylene in a single-crystal-to-single-crystal transformation. Extensive characterization, including by single crystal X-ray diffraction, reveals how intrinsic features of the nanocluster, such as its structure, chirality, redox-activity and magnetic profile, predetermine key properties of the emerging 2D structures. Within the nanosheets, the strict and unusual stereoselectivity of the nanocluster's Co edges for the low symmetry (α,α,β) isomer gives rise to in-plane structural anisotropy, while the helically chiral nanoclusters self-organize into alternating Δ- and Λ-homochiral rows. The nanocluster's high-spin Co edges, and its rich redox profile make the nanosheets both magnetically and electrochemically active, as revealed by solid state magnetic and cyclic voltammetry studies. The length and flexibility of the ditopic linker was varied, and found to have a secondary effect on the structure and stacking of the nanosheets within the 3D crystals. With these results we introduce a deterministic and versatile synthetic entry to programmable functionality and symmetry in 2D superatomic crystals. The Royal Society of Chemistry 2020-08-03 /pmc/articles/PMC8162370/ /pubmed/34094327 http://dx.doi.org/10.1039/d0sc03506h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Kephart, Jonathan A. Romero, Catherine G. Tseng, Chun-Chih Anderton, Kevin J. Yankowitz, Matthew Kaminsky, Werner Velian, Alexandra Hierarchical nanosheets built from superatomic clusters: properties, exfoliation and single-crystal-to-single-crystal intercalation |
title | Hierarchical nanosheets built from superatomic clusters: properties, exfoliation and single-crystal-to-single-crystal intercalation |
title_full | Hierarchical nanosheets built from superatomic clusters: properties, exfoliation and single-crystal-to-single-crystal intercalation |
title_fullStr | Hierarchical nanosheets built from superatomic clusters: properties, exfoliation and single-crystal-to-single-crystal intercalation |
title_full_unstemmed | Hierarchical nanosheets built from superatomic clusters: properties, exfoliation and single-crystal-to-single-crystal intercalation |
title_short | Hierarchical nanosheets built from superatomic clusters: properties, exfoliation and single-crystal-to-single-crystal intercalation |
title_sort | hierarchical nanosheets built from superatomic clusters: properties, exfoliation and single-crystal-to-single-crystal intercalation |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162370/ https://www.ncbi.nlm.nih.gov/pubmed/34094327 http://dx.doi.org/10.1039/d0sc03506h |
work_keys_str_mv | AT kephartjonathana hierarchicalnanosheetsbuiltfromsuperatomicclusterspropertiesexfoliationandsinglecrystaltosinglecrystalintercalation AT romerocatherineg hierarchicalnanosheetsbuiltfromsuperatomicclusterspropertiesexfoliationandsinglecrystaltosinglecrystalintercalation AT tsengchunchih hierarchicalnanosheetsbuiltfromsuperatomicclusterspropertiesexfoliationandsinglecrystaltosinglecrystalintercalation AT andertonkevinj hierarchicalnanosheetsbuiltfromsuperatomicclusterspropertiesexfoliationandsinglecrystaltosinglecrystalintercalation AT yankowitzmatthew hierarchicalnanosheetsbuiltfromsuperatomicclusterspropertiesexfoliationandsinglecrystaltosinglecrystalintercalation AT kaminskywerner hierarchicalnanosheetsbuiltfromsuperatomicclusterspropertiesexfoliationandsinglecrystaltosinglecrystalintercalation AT velianalexandra hierarchicalnanosheetsbuiltfromsuperatomicclusterspropertiesexfoliationandsinglecrystaltosinglecrystalintercalation |