Cargando…
Thermodynamic rules for zeolite formation from machine learning based global optimization
While the [TO(4)] tetrahedron packing rule leads to millions of likely zeolite structures, there are currently only 252 types of zeolite frameworks reported after decades of synthetic efforts. The subtle synthetic conditions, e.g. the structure-directing agents, pH and the feed ratio, were often bla...
Autores principales: | Ma, Sicong, Shang, Cheng, Wang, Chuan-Ming, Liu, Zhi-Pan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162439/ https://www.ncbi.nlm.nih.gov/pubmed/34094273 http://dx.doi.org/10.1039/d0sc03918g |
Ejemplares similares
-
Machine learning potential era of zeolite simulation
por: Ma, Sicong, et al.
Publicado: (2022) -
Violations of Löwenstein's rule in zeolites
por: Fletcher, Rachel E., et al.
Publicado: (2017) -
Atomic structure of boron resolved using machine learning and global sampling
por: Huang, Si-Da, et al.
Publicado: (2018) -
Global optimization of extraframework ensembles in zeolites: structural analysis of extraframework aluminum species in MOR and MFI zeolites
por: Khramenkova, Elena V., et al.
Publicado: (2022) -
Coarse-grained versus fully atomistic machine learning for zeolitic imidazolate frameworks
por: Faure Beaulieu, Zoé, et al.
Publicado: (2023)