Cargando…

Covalent cucurbit[7]uril–dye conjugates for sensing in aqueous saline media and biofluids

Non-covalent chemosensing ensembles of cucurbit[n]urils (CBn) have been widely used in proof-of-concept sensing applications, but they are prone to disintegrate in saline media, e.g. biological fluids. We show here that covalent cucurbit[7]uril–indicator dye conjugates are buffer- (10× PBS buffer) a...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Changming, Grimm, Laura, Prabodh, Amrutha, Baksi, Ananya, Siennicka, Alicja, Levkin, Pavel A., Kappes, Manfred M., Biedermann, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162441/
https://www.ncbi.nlm.nih.gov/pubmed/34094355
http://dx.doi.org/10.1039/d0sc03079a
Descripción
Sumario:Non-covalent chemosensing ensembles of cucurbit[n]urils (CBn) have been widely used in proof-of-concept sensing applications, but they are prone to disintegrate in saline media, e.g. biological fluids. We show here that covalent cucurbit[7]uril–indicator dye conjugates are buffer- (10× PBS buffer) and saline-stable (up to 1.4 M NaCl) and allow for selective sensing of Parkinson's drug amantadine in human urine and saliva, where the analogous non-covalent CB7⊃dye complex is dysfunctional. The in-depth analysis of the covalent host–dye conjugates in the gas-phase, and deionized versus saline aqueous media revealed interesting structural, thermodynamic and kinetic effects that are of general interest for the design of CBn-based supramolecular chemosensors and systems. This work also introduces a novel high-affinity indicator dye for CB7 through which fundamental limitations of indicator displacement assays (IDA) were exposed, namely an impractical slow equilibration time. Unlike non-covalent CBn⊃dye reporter pairs, the conjugate chemosensors can also operate through a S(N)2-type guest–dye exchange mechanism, which shortens assay times and opens new avenues for tailoring analyte-selectivity.