Cargando…
Towards efficient discovery of green synthetic pathways with Monte Carlo tree search and reinforcement learning
Computer aided synthesis planning of synthetic pathways with green process conditions has become of increasing importance in organic chemistry, but the large search space inherent in synthesis planning and the difficulty in predicting reaction conditions make it a significant challenge. We introduce...
Autores principales: | Wang, Xiaoxue, Qian, Yujie, Gao, Hanyu, Coley, Connor W., Mo, Yiming, Barzilay, Regina, Jensen, Klavs F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162445/ https://www.ncbi.nlm.nih.gov/pubmed/34094345 http://dx.doi.org/10.1039/d0sc04184j |
Ejemplares similares
-
Autonomous maneuver decision-making method based on reinforcement learning and Monte Carlo tree search
por: Zhang, Hongpeng, et al.
Publicado: (2022) -
Prediction of Organic Reaction Outcomes Using Machine
Learning
por: Coley, Connor W., et al.
Publicado: (2017) -
Learning the Fastest RNA Folding Path Based on Reinforcement Learning and Monte Carlo Tree Search
por: Mao, Kangkun, et al.
Publicado: (2021) -
Monte Carlo and Quasi-Monte Carlo Sampling
por: Lemieux, Christiane
Publicado: (2009) -
A graph-convolutional neural network model for the prediction of chemical reactivity
por: Coley, Connor W., et al.
Publicado: (2018)