Cargando…
Direct synthesis of the organic and Ge free Al containing BOG zeolite (ITQ-47) and its application for transformation of biomass derived molecules
Aluminosilicate boggsite (Si/Al-BOG) has been hydrothermally synthesized without adding organic structure-directing agents (OSDAs) in the synthesis gel using the borosilicogermanium ITQ-47 (Si/B-ITQ-47) zeolite as seeds. The introduction of the costly and environmentally less benign phosphazene orga...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162478/ https://www.ncbi.nlm.nih.gov/pubmed/34123221 http://dx.doi.org/10.1039/d0sc04044d |
Sumario: | Aluminosilicate boggsite (Si/Al-BOG) has been hydrothermally synthesized without adding organic structure-directing agents (OSDAs) in the synthesis gel using the borosilicogermanium ITQ-47 (Si/B-ITQ-47) zeolite as seeds. The introduction of the costly and environmentally less benign phosphazene organic structure-directing agent is not required to grow the zeolite. Physicochemical characterization experiments show that Si/Al-BOG has good crystallinity, high surface area, tetrahedral Al(3+) species, and acid sites. In order to test the catalytic performance of the zeolite, the synthesis of l,l-lactide from l-lactic acid was performed. Si/Al-BOG exhibits 88.2% conversion of l-lactic acid and 83.8% l,l-lactide selectivity, which are better than those of other zeolites studied up to now. |
---|