Cargando…
Prediction of drug metabolites using neural machine translation
Metabolic processes in the human body can alter the structure of a drug affecting its efficacy and safety. As a result, the investigation of the metabolic fate of a candidate drug is an essential part of drug design studies. Computational approaches have been developed for the prediction of possible...
Autores principales: | Litsa, Eleni E., Das, Payel, Kavraki, Lydia E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162519/ https://www.ncbi.nlm.nih.gov/pubmed/34094473 http://dx.doi.org/10.1039/d0sc02639e |
Ejemplares similares
-
An end-to-end deep learning framework for translating mass spectra to de-novo molecules
por: Litsa, Eleni E., et al.
Publicado: (2023) -
“Found in Translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models
por: Schwaller, Philippe, et al.
Publicado: (2018) -
Substructure-based neural machine translation for retrosynthetic prediction
por: Ucak, Umit V., et al.
Publicado: (2021) -
Drug–target affinity prediction using graph neural network and contact maps
por: Jiang, Mingjian, et al.
Publicado: (2020) -
“Smart” drug delivery: A window to future of translational medicine
por: Rana, Abhilash, et al.
Publicado: (2023)