Cargando…
Construction of a chiral artificial enzyme used for enantioselective catalysis in live cells
Nanozymes as a newcomer in the artificial enzyme family have shown several advantages over natural enzymes such as their high stability in harsh environments, facile production on large scale, long storage time, low costs, and higher resistance to biodegradation. However, compared with natural enzym...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162767/ https://www.ncbi.nlm.nih.gov/pubmed/34094377 http://dx.doi.org/10.1039/d0sc03082a |
_version_ | 1783700779224268800 |
---|---|
author | Zhou, Ya Wei, Weili Cui, Fengchao Yan, Zhengqing Sun, Yuhuan Ren, Jinsong Qu, Xiaogang |
author_facet | Zhou, Ya Wei, Weili Cui, Fengchao Yan, Zhengqing Sun, Yuhuan Ren, Jinsong Qu, Xiaogang |
author_sort | Zhou, Ya |
collection | PubMed |
description | Nanozymes as a newcomer in the artificial enzyme family have shown several advantages over natural enzymes such as their high stability in harsh environments, facile production on large scale, long storage time, low costs, and higher resistance to biodegradation. However, compared with natural enzymes, it is still a great challenge to design a nanozyme with high selectivity, especially high enantioselectivity. It is highly desirable and demanding to develop chiral nanozymes with high and on-demand enantioselectivity for practical applications. Herein, we present an unprecedented approach to construct chiral artificial peroxidase with ultrahigh enantioselectivity. Inspired by the structure of the natural enzyme horseradish peroxidase (HRP), we have constructed a series of stereoselective nanozymes (Fe(3)O(4)@Poly(AA)) by using the ferromagnetic nanoparticle (Fe(3)O(4) NP) yolk as the catalytic core and amino acid-appended chiral polymer shell as the chiral selector. Among them, Fe(3)O(4)@Poly(d-Trp) exhibits the highest enantioselectivity. More intriguingly, their enantioselectivity will be readily reversed by replacing d-Trp with l-Trp. The selectivity factor is up to 5.38, even higher than that of HRP. Kinetic parameters, dialysis experiments, and molecular simulations together with activation energy reveal that the selectivity originates from the d-/l-Trp appended polymer shell, which can result in better affinity and catalytic activity to d-/l-tyrosinol. The artificial peroxidases have been used for asymmetric catalysis to prepare enantiopure d- or l-enantiomers. Besides, by using fluorescent labelled FITC-tyrosinol(L) and RhB-tyrosinol(D), the artificial peroxidases can catalyze green or red fluorescent chiral tyrosinol to selectively label live yeast cells among yeast, S. aureus, E. coli and B. subtilis bacterial cells. This work opens a new avenue for better design of stereoselective artificial enzymes. |
format | Online Article Text |
id | pubmed-8162767 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-81627672021-06-04 Construction of a chiral artificial enzyme used for enantioselective catalysis in live cells Zhou, Ya Wei, Weili Cui, Fengchao Yan, Zhengqing Sun, Yuhuan Ren, Jinsong Qu, Xiaogang Chem Sci Chemistry Nanozymes as a newcomer in the artificial enzyme family have shown several advantages over natural enzymes such as their high stability in harsh environments, facile production on large scale, long storage time, low costs, and higher resistance to biodegradation. However, compared with natural enzymes, it is still a great challenge to design a nanozyme with high selectivity, especially high enantioselectivity. It is highly desirable and demanding to develop chiral nanozymes with high and on-demand enantioselectivity for practical applications. Herein, we present an unprecedented approach to construct chiral artificial peroxidase with ultrahigh enantioselectivity. Inspired by the structure of the natural enzyme horseradish peroxidase (HRP), we have constructed a series of stereoselective nanozymes (Fe(3)O(4)@Poly(AA)) by using the ferromagnetic nanoparticle (Fe(3)O(4) NP) yolk as the catalytic core and amino acid-appended chiral polymer shell as the chiral selector. Among them, Fe(3)O(4)@Poly(d-Trp) exhibits the highest enantioselectivity. More intriguingly, their enantioselectivity will be readily reversed by replacing d-Trp with l-Trp. The selectivity factor is up to 5.38, even higher than that of HRP. Kinetic parameters, dialysis experiments, and molecular simulations together with activation energy reveal that the selectivity originates from the d-/l-Trp appended polymer shell, which can result in better affinity and catalytic activity to d-/l-tyrosinol. The artificial peroxidases have been used for asymmetric catalysis to prepare enantiopure d- or l-enantiomers. Besides, by using fluorescent labelled FITC-tyrosinol(L) and RhB-tyrosinol(D), the artificial peroxidases can catalyze green or red fluorescent chiral tyrosinol to selectively label live yeast cells among yeast, S. aureus, E. coli and B. subtilis bacterial cells. This work opens a new avenue for better design of stereoselective artificial enzymes. The Royal Society of Chemistry 2020-09-23 /pmc/articles/PMC8162767/ /pubmed/34094377 http://dx.doi.org/10.1039/d0sc03082a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Zhou, Ya Wei, Weili Cui, Fengchao Yan, Zhengqing Sun, Yuhuan Ren, Jinsong Qu, Xiaogang Construction of a chiral artificial enzyme used for enantioselective catalysis in live cells |
title | Construction of a chiral artificial enzyme used for enantioselective catalysis in live cells |
title_full | Construction of a chiral artificial enzyme used for enantioselective catalysis in live cells |
title_fullStr | Construction of a chiral artificial enzyme used for enantioselective catalysis in live cells |
title_full_unstemmed | Construction of a chiral artificial enzyme used for enantioselective catalysis in live cells |
title_short | Construction of a chiral artificial enzyme used for enantioselective catalysis in live cells |
title_sort | construction of a chiral artificial enzyme used for enantioselective catalysis in live cells |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162767/ https://www.ncbi.nlm.nih.gov/pubmed/34094377 http://dx.doi.org/10.1039/d0sc03082a |
work_keys_str_mv | AT zhouya constructionofachiralartificialenzymeusedforenantioselectivecatalysisinlivecells AT weiweili constructionofachiralartificialenzymeusedforenantioselectivecatalysisinlivecells AT cuifengchao constructionofachiralartificialenzymeusedforenantioselectivecatalysisinlivecells AT yanzhengqing constructionofachiralartificialenzymeusedforenantioselectivecatalysisinlivecells AT sunyuhuan constructionofachiralartificialenzymeusedforenantioselectivecatalysisinlivecells AT renjinsong constructionofachiralartificialenzymeusedforenantioselectivecatalysisinlivecells AT quxiaogang constructionofachiralartificialenzymeusedforenantioselectivecatalysisinlivecells |