Cargando…

Au(3)-to-Ag(3) coordinate-covalent bonding and other supramolecular interactions with covalent bonding strength

An efficient strategy for designing charge-transfer complexes using coinage metal cyclic trinuclear complexes (CTCs) is described herein. Due to opposite quadrupolar electrostatic contributions from metal ions and ligand substituents, [Au(μ-Pz-(i-C(3)H(7))(2))](3)·[Ag(μ-Tz-(n-C(3)F(7))(2))](3) (Pz =...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Zhou, Chilukuri, Bhaskar, Yang, Chi, Rawashdeh, Abdel-Monem M., Arvapally, Ravi K., Tekarli, Sammer M., Wang, Xiaoping, Cardenas, Christian T., Cundari, Thomas R., Omary, Mohammad A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162903/
https://www.ncbi.nlm.nih.gov/pubmed/34094358
http://dx.doi.org/10.1039/d0sc02520h
_version_ 1783700802602270720
author Lu, Zhou
Chilukuri, Bhaskar
Yang, Chi
Rawashdeh, Abdel-Monem M.
Arvapally, Ravi K.
Tekarli, Sammer M.
Wang, Xiaoping
Cardenas, Christian T.
Cundari, Thomas R.
Omary, Mohammad A.
author_facet Lu, Zhou
Chilukuri, Bhaskar
Yang, Chi
Rawashdeh, Abdel-Monem M.
Arvapally, Ravi K.
Tekarli, Sammer M.
Wang, Xiaoping
Cardenas, Christian T.
Cundari, Thomas R.
Omary, Mohammad A.
author_sort Lu, Zhou
collection PubMed
description An efficient strategy for designing charge-transfer complexes using coinage metal cyclic trinuclear complexes (CTCs) is described herein. Due to opposite quadrupolar electrostatic contributions from metal ions and ligand substituents, [Au(μ-Pz-(i-C(3)H(7))(2))](3)·[Ag(μ-Tz-(n-C(3)F(7))(2))](3) (Pz = pyrazolate, Tz = triazolate) has been obtained and its structure verified by single crystal X-ray diffraction – representing the 1(st) crystallographically-verified [Image: see text] stacked adduct of monovalent coinage metal CTCs. Abundant supramolecular interactions with aggregate covalent bonding strength arise from a combination of M–M′ (Au → Ag), metal–π, π–π interactions and hydrogen bonding in this charge-transfer complex, according to density functional theory analyses, yielding a computed binding energy of 66 kcal mol(−1) between the two trimer moieties – a large value for intermolecular interactions between adjacent d(10) centres (nearly doubling the value for a recently-claimed Au(i) → Cu(i) polar-covalent bond: Proc. Natl. Acad. Sci. U.S.A., 2017, 114, E5042) – which becomes 87 kcal mol(−1) with benzene stacking. Surprisingly, DFT analysis suggests that: (a) some other literature precedents should have attained a stacked [Image: see text] product akin to the one herein, with similar or even higher binding energy; and (b) a high overall intertrimer bonding energy by inferior electrostatic assistance, underscoring genuine orbital overlap between M and M′ frontier molecular orbitals in such polar-covalent M–M′ bonds in this family of molecules. The Au → Ag bonding is reminiscent of classical Werner-type coordinate-covalent bonds such as H(3)N: → Ag in [Ag(NH(3))(2)](+), as demonstrated herein quantitatively. Solid-state and molecular modeling illustrate electron flow from the π-basic gold trimer to the π-acidic silver trimer with augmented contributions from ligand-to-ligand’ (LL′CT) and metal-to-ligand (MLCT) charge transfer.
format Online
Article
Text
id pubmed-8162903
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-81629032021-06-04 Au(3)-to-Ag(3) coordinate-covalent bonding and other supramolecular interactions with covalent bonding strength Lu, Zhou Chilukuri, Bhaskar Yang, Chi Rawashdeh, Abdel-Monem M. Arvapally, Ravi K. Tekarli, Sammer M. Wang, Xiaoping Cardenas, Christian T. Cundari, Thomas R. Omary, Mohammad A. Chem Sci Chemistry An efficient strategy for designing charge-transfer complexes using coinage metal cyclic trinuclear complexes (CTCs) is described herein. Due to opposite quadrupolar electrostatic contributions from metal ions and ligand substituents, [Au(μ-Pz-(i-C(3)H(7))(2))](3)·[Ag(μ-Tz-(n-C(3)F(7))(2))](3) (Pz = pyrazolate, Tz = triazolate) has been obtained and its structure verified by single crystal X-ray diffraction – representing the 1(st) crystallographically-verified [Image: see text] stacked adduct of monovalent coinage metal CTCs. Abundant supramolecular interactions with aggregate covalent bonding strength arise from a combination of M–M′ (Au → Ag), metal–π, π–π interactions and hydrogen bonding in this charge-transfer complex, according to density functional theory analyses, yielding a computed binding energy of 66 kcal mol(−1) between the two trimer moieties – a large value for intermolecular interactions between adjacent d(10) centres (nearly doubling the value for a recently-claimed Au(i) → Cu(i) polar-covalent bond: Proc. Natl. Acad. Sci. U.S.A., 2017, 114, E5042) – which becomes 87 kcal mol(−1) with benzene stacking. Surprisingly, DFT analysis suggests that: (a) some other literature precedents should have attained a stacked [Image: see text] product akin to the one herein, with similar or even higher binding energy; and (b) a high overall intertrimer bonding energy by inferior electrostatic assistance, underscoring genuine orbital overlap between M and M′ frontier molecular orbitals in such polar-covalent M–M′ bonds in this family of molecules. The Au → Ag bonding is reminiscent of classical Werner-type coordinate-covalent bonds such as H(3)N: → Ag in [Ag(NH(3))(2)](+), as demonstrated herein quantitatively. Solid-state and molecular modeling illustrate electron flow from the π-basic gold trimer to the π-acidic silver trimer with augmented contributions from ligand-to-ligand’ (LL′CT) and metal-to-ligand (MLCT) charge transfer. The Royal Society of Chemistry 2020-09-11 /pmc/articles/PMC8162903/ /pubmed/34094358 http://dx.doi.org/10.1039/d0sc02520h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Lu, Zhou
Chilukuri, Bhaskar
Yang, Chi
Rawashdeh, Abdel-Monem M.
Arvapally, Ravi K.
Tekarli, Sammer M.
Wang, Xiaoping
Cardenas, Christian T.
Cundari, Thomas R.
Omary, Mohammad A.
Au(3)-to-Ag(3) coordinate-covalent bonding and other supramolecular interactions with covalent bonding strength
title Au(3)-to-Ag(3) coordinate-covalent bonding and other supramolecular interactions with covalent bonding strength
title_full Au(3)-to-Ag(3) coordinate-covalent bonding and other supramolecular interactions with covalent bonding strength
title_fullStr Au(3)-to-Ag(3) coordinate-covalent bonding and other supramolecular interactions with covalent bonding strength
title_full_unstemmed Au(3)-to-Ag(3) coordinate-covalent bonding and other supramolecular interactions with covalent bonding strength
title_short Au(3)-to-Ag(3) coordinate-covalent bonding and other supramolecular interactions with covalent bonding strength
title_sort au(3)-to-ag(3) coordinate-covalent bonding and other supramolecular interactions with covalent bonding strength
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162903/
https://www.ncbi.nlm.nih.gov/pubmed/34094358
http://dx.doi.org/10.1039/d0sc02520h
work_keys_str_mv AT luzhou au3toag3coordinatecovalentbondingandothersupramolecularinteractionswithcovalentbondingstrength
AT chilukuribhaskar au3toag3coordinatecovalentbondingandothersupramolecularinteractionswithcovalentbondingstrength
AT yangchi au3toag3coordinatecovalentbondingandothersupramolecularinteractionswithcovalentbondingstrength
AT rawashdehabdelmonemm au3toag3coordinatecovalentbondingandothersupramolecularinteractionswithcovalentbondingstrength
AT arvapallyravik au3toag3coordinatecovalentbondingandothersupramolecularinteractionswithcovalentbondingstrength
AT tekarlisammerm au3toag3coordinatecovalentbondingandothersupramolecularinteractionswithcovalentbondingstrength
AT wangxiaoping au3toag3coordinatecovalentbondingandothersupramolecularinteractionswithcovalentbondingstrength
AT cardenaschristiant au3toag3coordinatecovalentbondingandothersupramolecularinteractionswithcovalentbondingstrength
AT cundarithomasr au3toag3coordinatecovalentbondingandothersupramolecularinteractionswithcovalentbondingstrength
AT omarymohammada au3toag3coordinatecovalentbondingandothersupramolecularinteractionswithcovalentbondingstrength