Cargando…
A Radiogenomics Ensemble to Predict EGFR and KRAS Mutations in NSCLC
Lung cancer causes more deaths globally than any other type of cancer. To determine the best treatment, detecting EGFR and KRAS mutations is of interest. However, non-invasive ways to obtain this information are not available. Furthermore, many times there is a lack of big enough relevant public dat...
Autores principales: | Moreno, Silvia, Bonfante, Mario, Zurek, Eduardo, Cherezov, Dmitry, Goldgof, Dmitry, Hall, Lawrence, Schabath, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162978/ https://www.ncbi.nlm.nih.gov/pubmed/33946756 http://dx.doi.org/10.3390/tomography7020014 |
Ejemplares similares
-
Revealing Tumor Habitats from Texture Heterogeneity Analysis for Classification of Lung Cancer Malignancy and Aggressiveness
por: Cherezov, Dmitry, et al.
Publicado: (2019) -
Lung Nodule Sizes Are Encoded When Scaling CT Image for CNN's
por: Cherezov, Dmitry, et al.
Publicado: (2020) -
An Explainable Radiogenomic Framework to Predict Mutational Status of KRAS and EGFR in Lung Adenocarcinoma Patients
por: Prencipe, Berardino, et al.
Publicado: (2023) -
Delta radiomic features improve prediction for lung cancer incidence: A nested case–control analysis of the National Lung Screening Trial
por: Cherezov, Dmitry, et al.
Publicado: (2018) -
Predictive radiogenomics modeling of EGFR mutation status in lung cancer
por: Gevaert, Olivier, et al.
Publicado: (2017)