Cargando…
Cortical response to naturalistic stimuli is largely predictable with deep neural networks
Naturalistic stimuli, such as movies, activate a substantial portion of the human brain, invoking a response shared across individuals. Encoding models that predict neural responses to arbitrary stimuli can be very useful for studying brain function. However, existing models focus on limited aspects...
Autores principales: | Khosla, Meenakshi, Ngo, Gia H., Jamison, Keith, Kuceyeski, Amy, Sabuncu, Mert R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163078/ https://www.ncbi.nlm.nih.gov/pubmed/34049888 http://dx.doi.org/10.1126/sciadv.abe7547 |
Ejemplares similares
-
Predicting individual task contrasts from resting-state functional connectivity using a surface-based convolutional network
por: Ngo, Gia H., et al.
Publicado: (2022) -
Personalized visual encoding model construction with small data
por: Gu, Zijin, et al.
Publicado: (2022) -
Modulating human brain responses via optimal natural image selection and synthetic image generation
por: Gu, Zijin, et al.
Publicado: (2023) -
Human brain responses are modulated when exposed to optimized natural images or synthetically generated images
por: Gu, Zijin, et al.
Publicado: (2023) -
Sex classification using long‐range temporal dependence of resting‐state functional MRI time series
por: Dhamala, Elvisha, et al.
Publicado: (2020)