Cargando…
Predicting the chemical reactivity of organic materials using a machine-learning approach
Stability and compatibility between chemical components are essential parameters that need to be considered in the selection of functional materials in configuring a system. In configuring devices such as batteries or solar cells, not only the functionality of individual constituting materials such...
Autores principales: | Lee, Byungju, Yoo, Jaekyun, Kang, Kisuk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163198/ https://www.ncbi.nlm.nih.gov/pubmed/34094154 http://dx.doi.org/10.1039/d0sc01328e |
Ejemplares similares
-
Predicting the emission wavelength of organic molecules using a combinatorial QSAR and machine learning approach
por: Ye, Zong-Rong, et al.
Publicado: (2020) -
High-performance organic circuits based on precisely aligned single-crystal arrays
por: Kang, Jingu, et al.
Publicado: (2018) -
Vitrimers: directing chemical reactivity to control material properties
por: Guerre, Marc, et al.
Publicado: (2020) -
IMPRESSION – prediction of NMR parameters for 3-dimensional chemical structures using machine learning with near quantum chemical accuracy
por: Gerrard, Will, et al.
Publicado: (2019) -
In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts
por: Yang, Hongbin, et al.
Publicado: (2018)