Cargando…

Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters

We report a parameterization of the second-order density-functional tight-binding (DFTB2) method for the quantum chemical simulation of phosphine-ligated nanoscale gold clusters, metalloids, and gold surfaces. Our parameterization extends the previously released DFTB2 “auorg” parameter set by connec...

Descripción completa

Detalles Bibliográficos
Autores principales: Vuong, Van Quan, Madridejos, Jenica Marie L., Aradi, Bálint, Sumpter, Bobby G., Metha, Gregory F., Irle, Stephan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163209/
https://www.ncbi.nlm.nih.gov/pubmed/34094493
http://dx.doi.org/10.1039/d0sc04514d
_version_ 1783700860381954048
author Vuong, Van Quan
Madridejos, Jenica Marie L.
Aradi, Bálint
Sumpter, Bobby G.
Metha, Gregory F.
Irle, Stephan
author_facet Vuong, Van Quan
Madridejos, Jenica Marie L.
Aradi, Bálint
Sumpter, Bobby G.
Metha, Gregory F.
Irle, Stephan
author_sort Vuong, Van Quan
collection PubMed
description We report a parameterization of the second-order density-functional tight-binding (DFTB2) method for the quantum chemical simulation of phosphine-ligated nanoscale gold clusters, metalloids, and gold surfaces. Our parameterization extends the previously released DFTB2 “auorg” parameter set by connecting it to the electronic parameter of phosphorus in the “mio” parameter set. Although this connection could technically simply be accomplished by creating only the required additional Au–P repulsive potential, we found that the Au 6p and P 3d virtual atomic orbital energy levels exert a strong influence on the overall performance of the combined parameter set. Our optimized parameters are validated against density functional theory (DFT) geometries, ligand binding and cluster isomerization energies, ligand dissociation potential energy curves, and molecular orbital energies for relevant phosphine-ligated Au(n) clusters (n = 2–70), as well as selected experimental X-ray structures from the Cambridge Structural Database. In addition, we validate DFTB simulated far-IR spectra for several phosphine- and thiolate-ligated gold clusters against experimental and DFT spectra. The transferability of the parameter set is evaluated using DFT and DFTB potential energy surfaces resulting from the chemisorption of a PH(3) molecule on the gold (111) surface. To demonstrate the potential of the DFTB method for quantum chemical simulations of metalloid gold clusters that are challenging for traditional DFT calculations, we report the predicted molecular geometry, electronic structure, ligand binding energy, and IR spectrum of Au(108)S(24)(PPh(3))(16).
format Online
Article
Text
id pubmed-8163209
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-81632092021-06-04 Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters Vuong, Van Quan Madridejos, Jenica Marie L. Aradi, Bálint Sumpter, Bobby G. Metha, Gregory F. Irle, Stephan Chem Sci Chemistry We report a parameterization of the second-order density-functional tight-binding (DFTB2) method for the quantum chemical simulation of phosphine-ligated nanoscale gold clusters, metalloids, and gold surfaces. Our parameterization extends the previously released DFTB2 “auorg” parameter set by connecting it to the electronic parameter of phosphorus in the “mio” parameter set. Although this connection could technically simply be accomplished by creating only the required additional Au–P repulsive potential, we found that the Au 6p and P 3d virtual atomic orbital energy levels exert a strong influence on the overall performance of the combined parameter set. Our optimized parameters are validated against density functional theory (DFT) geometries, ligand binding and cluster isomerization energies, ligand dissociation potential energy curves, and molecular orbital energies for relevant phosphine-ligated Au(n) clusters (n = 2–70), as well as selected experimental X-ray structures from the Cambridge Structural Database. In addition, we validate DFTB simulated far-IR spectra for several phosphine- and thiolate-ligated gold clusters against experimental and DFT spectra. The transferability of the parameter set is evaluated using DFT and DFTB potential energy surfaces resulting from the chemisorption of a PH(3) molecule on the gold (111) surface. To demonstrate the potential of the DFTB method for quantum chemical simulations of metalloid gold clusters that are challenging for traditional DFT calculations, we report the predicted molecular geometry, electronic structure, ligand binding energy, and IR spectrum of Au(108)S(24)(PPh(3))(16). The Royal Society of Chemistry 2020-11-02 /pmc/articles/PMC8163209/ /pubmed/34094493 http://dx.doi.org/10.1039/d0sc04514d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Vuong, Van Quan
Madridejos, Jenica Marie L.
Aradi, Bálint
Sumpter, Bobby G.
Metha, Gregory F.
Irle, Stephan
Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters
title Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters
title_full Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters
title_fullStr Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters
title_full_unstemmed Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters
title_short Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters
title_sort density-functional tight-binding for phosphine-stabilized nanoscale gold clusters
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163209/
https://www.ncbi.nlm.nih.gov/pubmed/34094493
http://dx.doi.org/10.1039/d0sc04514d
work_keys_str_mv AT vuongvanquan densityfunctionaltightbindingforphosphinestabilizednanoscalegoldclusters
AT madridejosjenicamariel densityfunctionaltightbindingforphosphinestabilizednanoscalegoldclusters
AT aradibalint densityfunctionaltightbindingforphosphinestabilizednanoscalegoldclusters
AT sumpterbobbyg densityfunctionaltightbindingforphosphinestabilizednanoscalegoldclusters
AT methagregoryf densityfunctionaltightbindingforphosphinestabilizednanoscalegoldclusters
AT irlestephan densityfunctionaltightbindingforphosphinestabilizednanoscalegoldclusters