Cargando…
Autonomous intelligent agents for accelerated materials discovery
We present an end-to-end computational system for autonomous materials discovery. The system aims for cost-effective optimization in large, high-dimensional search spaces of materials by adopting a sequential, agent-based approach to deciding which experiments to carry out. In choosing next experime...
Autores principales: | Montoya, Joseph H., Winther, Kirsten T., Flores, Raul A., Bligaard, Thomas, Hummelshøj, Jens S., Aykol, Muratahan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163357/ https://www.ncbi.nlm.nih.gov/pubmed/34123112 http://dx.doi.org/10.1039/d0sc01101k |
Ejemplares similares
-
Network analysis of synthesizable materials discovery
por: Aykol, Muratahan, et al.
Publicado: (2019) -
Benchmarking the acceleration of materials discovery by sequential learning
por: Rohr, Brian, et al.
Publicado: (2020) -
Novel inorganic crystal structures predicted using autonomous simulation agents
por: Ye, Weike, et al.
Publicado: (2022) -
Agents for sequential learning using multiple-fidelity data
por: Palizhati, Aini, et al.
Publicado: (2022) -
Machine learning–accelerated design and synthesis of polyelemental heterostructures
por: Wahl, Carolin B., et al.
Publicado: (2021)