Cargando…
Crystallographic characterization of the metal–organic framework Fe(2)(bdp)(3) upon reductive cation insertion
Precisely locating extra-framework cations in anionic metal–organic framework compounds remains a long-standing, yet crucial, challenge for elucidating structure–performance relationships in functional materials. Single-crystal X-ray diffraction is one of the most powerful approaches for this task,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163410/ https://www.ncbi.nlm.nih.gov/pubmed/34123166 http://dx.doi.org/10.1039/d0sc03383a |
_version_ | 1783700908407783424 |
---|---|
author | Biggins, Naomi Ziebel, Michael E. Gonzalez, Miguel I. Long, Jeffrey R. |
author_facet | Biggins, Naomi Ziebel, Michael E. Gonzalez, Miguel I. Long, Jeffrey R. |
author_sort | Biggins, Naomi |
collection | PubMed |
description | Precisely locating extra-framework cations in anionic metal–organic framework compounds remains a long-standing, yet crucial, challenge for elucidating structure–performance relationships in functional materials. Single-crystal X-ray diffraction is one of the most powerful approaches for this task, but single crystals of frameworks often degrade when subjected to post-synthetic metalation or reduction. Here, we demonstrate the growth of sizable single crystals of the robust metal–organic framework Fe(2)(bdp)(3) (bdp(2−) = benzene-1,4-dipyrazolate) and employ single-crystal-to-single-crystal chemical reductions to access the solvated framework materials A(2)Fe(2)(bdp)(3)·yTHF (A = Li(+), Na(+), K(+)). X-ray diffraction analysis of the sodium and potassium congeners reveals that the cations are located near the center of the triangular framework channels and are stabilized by weak cation–π interactions with the framework ligands. Freeze-drying with benzene enables isolation of activated single crystals of Na(0.5)Fe(2)(bdp)(3) and Li(2)Fe(2)(bdp)(3) and the first structural characterization of activated metal–organic frameworks wherein extra-framework alkali metal cations are also structurally located. Comparison of the solvated and activated sodium-containing structures reveals that the cation positions differ in the two materials, likely due to cation migration that occurs upon solvent removal to maximize stabilizing cation–π interactions. Hydrogen adsorption data indicate that these cation–framework interactions are sufficient to diminish the effective cationic charge, leading to little or no enhancement in gas uptake relative to Fe(2)(bdp)(3). In contrast, Mg(0.85)Fe(2)(bdp)(3) exhibits enhanced H(2) affinity and capacity over the non-reduced parent material. This observation shows that increasing the charge density of the pore-residing cation serves to compensate for charge dampening effects resulting from cation–framework interactions and thereby promotes stronger cation–H(2) interactions. |
format | Online Article Text |
id | pubmed-8163410 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-81634102021-06-11 Crystallographic characterization of the metal–organic framework Fe(2)(bdp)(3) upon reductive cation insertion Biggins, Naomi Ziebel, Michael E. Gonzalez, Miguel I. Long, Jeffrey R. Chem Sci Chemistry Precisely locating extra-framework cations in anionic metal–organic framework compounds remains a long-standing, yet crucial, challenge for elucidating structure–performance relationships in functional materials. Single-crystal X-ray diffraction is one of the most powerful approaches for this task, but single crystals of frameworks often degrade when subjected to post-synthetic metalation or reduction. Here, we demonstrate the growth of sizable single crystals of the robust metal–organic framework Fe(2)(bdp)(3) (bdp(2−) = benzene-1,4-dipyrazolate) and employ single-crystal-to-single-crystal chemical reductions to access the solvated framework materials A(2)Fe(2)(bdp)(3)·yTHF (A = Li(+), Na(+), K(+)). X-ray diffraction analysis of the sodium and potassium congeners reveals that the cations are located near the center of the triangular framework channels and are stabilized by weak cation–π interactions with the framework ligands. Freeze-drying with benzene enables isolation of activated single crystals of Na(0.5)Fe(2)(bdp)(3) and Li(2)Fe(2)(bdp)(3) and the first structural characterization of activated metal–organic frameworks wherein extra-framework alkali metal cations are also structurally located. Comparison of the solvated and activated sodium-containing structures reveals that the cation positions differ in the two materials, likely due to cation migration that occurs upon solvent removal to maximize stabilizing cation–π interactions. Hydrogen adsorption data indicate that these cation–framework interactions are sufficient to diminish the effective cationic charge, leading to little or no enhancement in gas uptake relative to Fe(2)(bdp)(3). In contrast, Mg(0.85)Fe(2)(bdp)(3) exhibits enhanced H(2) affinity and capacity over the non-reduced parent material. This observation shows that increasing the charge density of the pore-residing cation serves to compensate for charge dampening effects resulting from cation–framework interactions and thereby promotes stronger cation–H(2) interactions. The Royal Society of Chemistry 2020-08-10 /pmc/articles/PMC8163410/ /pubmed/34123166 http://dx.doi.org/10.1039/d0sc03383a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Biggins, Naomi Ziebel, Michael E. Gonzalez, Miguel I. Long, Jeffrey R. Crystallographic characterization of the metal–organic framework Fe(2)(bdp)(3) upon reductive cation insertion |
title | Crystallographic characterization of the metal–organic framework Fe(2)(bdp)(3) upon reductive cation insertion |
title_full | Crystallographic characterization of the metal–organic framework Fe(2)(bdp)(3) upon reductive cation insertion |
title_fullStr | Crystallographic characterization of the metal–organic framework Fe(2)(bdp)(3) upon reductive cation insertion |
title_full_unstemmed | Crystallographic characterization of the metal–organic framework Fe(2)(bdp)(3) upon reductive cation insertion |
title_short | Crystallographic characterization of the metal–organic framework Fe(2)(bdp)(3) upon reductive cation insertion |
title_sort | crystallographic characterization of the metal–organic framework fe(2)(bdp)(3) upon reductive cation insertion |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163410/ https://www.ncbi.nlm.nih.gov/pubmed/34123166 http://dx.doi.org/10.1039/d0sc03383a |
work_keys_str_mv | AT bigginsnaomi crystallographiccharacterizationofthemetalorganicframeworkfe2bdp3uponreductivecationinsertion AT ziebelmichaele crystallographiccharacterizationofthemetalorganicframeworkfe2bdp3uponreductivecationinsertion AT gonzalezmigueli crystallographiccharacterizationofthemetalorganicframeworkfe2bdp3uponreductivecationinsertion AT longjeffreyr crystallographiccharacterizationofthemetalorganicframeworkfe2bdp3uponreductivecationinsertion |