Cargando…
Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
Machine learning offers an intriguing alternative to first-principle analysis for discovering new physics from experimental data. However, to date, purely data-driven methods have only proven successful in uncovering physical laws describing simple, low-dimensional systems with low levels of noise....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163752/ https://www.ncbi.nlm.nih.gov/pubmed/34050155 http://dx.doi.org/10.1038/s41467-021-23479-0 |