Cargando…

Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression

Machine learning offers an intriguing alternative to first-principle analysis for discovering new physics from experimental data. However, to date, purely data-driven methods have only proven successful in uncovering physical laws describing simple, low-dimensional systems with low levels of noise....

Descripción completa

Detalles Bibliográficos
Autores principales: Reinbold, Patrick A. K., Kageorge, Logan M., Schatz, Michael F., Grigoriev, Roman O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163752/
https://www.ncbi.nlm.nih.gov/pubmed/34050155
http://dx.doi.org/10.1038/s41467-021-23479-0