Cargando…
Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
Machine learning offers an intriguing alternative to first-principle analysis for discovering new physics from experimental data. However, to date, purely data-driven methods have only proven successful in uncovering physical laws describing simple, low-dimensional systems with low levels of noise....
Autores principales: | Reinbold, Patrick A. K., Kageorge, Logan M., Schatz, Michael F., Grigoriev, Roman O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163752/ https://www.ncbi.nlm.nih.gov/pubmed/34050155 http://dx.doi.org/10.1038/s41467-021-23479-0 |
Ejemplares similares
-
Symbolic Learning and Reasoning With Noisy Data for Probabilistic Anchoring
por: Zuidberg Dos Martires, Pedro, et al.
Publicado: (2020) -
A Robust Supervised Variable Selection for Noisy High-Dimensional Data
por: Kalina, Jan, et al.
Publicado: (2015) -
Robust speaker recognition in noisy environments
por: Rao, K Sreenivasa, et al.
Publicado: (2014) -
AI Feynman: A physics-inspired method for symbolic regression
por: Udrescu, Silviu-Marian, et al.
Publicado: (2020) -
Artificial Intelligence in Physical Sciences: Symbolic Regression Trends and Perspectives
por: Angelis, Dimitrios, et al.
Publicado: (2023)