Cargando…
Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions
Existing computational methods that use single-cell RNA-sequencing (scRNA-seq) for cell fate prediction do not model how cells evolve stochastically and in physical time, nor can they predict how differentiation trajectories are altered by proposed interventions. We introduce PRESCIENT (Potential en...
Autores principales: | Yeo, Grace Hui Ting, Saksena, Sachit D., Gifford, David K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163769/ https://www.ncbi.nlm.nih.gov/pubmed/34050150 http://dx.doi.org/10.1038/s41467-021-23518-w |
Ejemplares similares
-
Prescient diagnostic analysis for boron nutritional status in soy crops
por: Traspadini, Edilaine Istéfani Franklin, et al.
Publicado: (2023) -
A deep-learning model of prescient ideas demonstrates that they emerge from the periphery
por: Vicinanza, Paul, et al.
Publicado: (2022) -
Dr. Eberhard Trams—The man who coined the name “exosomes”—A prescient but largely forgotten pioneer
por: MacDonald, Ewen, et al.
Publicado: (2023) -
Time-Series Clustering of Single-Cell Trajectories in Collective Cell Migration
por: Xin, Zhuohan, et al.
Publicado: (2022) -
Tempora: Cell trajectory inference using time-series single-cell RNA sequencing data
por: Tran, Thinh N., et al.
Publicado: (2020)