Cargando…
Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry
Crosslinking mass spectrometry has developed into a robust technique that is increasingly used to investigate the interactomes of organelles and cells. However, the incomplete and noisy information in the mass spectra of crosslinked peptides limits the numbers of protein–protein interactions that ca...
Autores principales: | Giese, Sven H., Sinn, Ludwig R., Wegner, Fritz, Rappsilber, Juri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163845/ https://www.ncbi.nlm.nih.gov/pubmed/34050149 http://dx.doi.org/10.1038/s41467-021-23441-0 |
Ejemplares similares
-
Reliable identification of protein-protein interactions by crosslinking mass spectrometry
por: Lenz, Swantje, et al.
Publicado: (2021) -
Leveraging Parameter Dependencies in High-Field Asymmetric
Waveform Ion-Mobility Spectrometry and Size Exclusion Chromatography
for Proteome-wide Cross-Linking Mass Spectrometry
por: Sinn, Ludwig R., et al.
Publicado: (2022) -
Noncovalently Associated Peptides Observed during
Liquid Chromatography-Mass Spectrometry and Their Effect on Cross-Link
Analyses
por: Giese, Sven H., et al.
Publicado: (2019) -
Protein Tertiary Structure by Crosslinking/Mass Spectrometry
por: Schneider, Michael, et al.
Publicado: (2018) -
Protein Dynamics in Solution by Quantitative Crosslinking/Mass Spectrometry
por: Chen, Zhuo A., et al.
Publicado: (2018)