Cargando…
Artificial intelligence for detecting electrolyte imbalance using electrocardiography
INTRODUCTION: The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography...
Autores principales: | Kwon, Joon‐myoung, Jung, Min‐Seung, Kim, Kyung‐Hee, Jo, Yong‐Yeon, Shin, Jae‐Hyun, Cho, Yong‐Hyeon, Lee, Yoon‐Ji, Ban, Jang‐Hyeon, Jeon, Ki‐Hyun, Lee, Soo Youn, Park, Jinsik, Oh, Byung‐Hee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164149/ https://www.ncbi.nlm.nih.gov/pubmed/33719135 http://dx.doi.org/10.1111/anec.12839 |
Ejemplares similares
-
Artificial intelligence assessment for early detection and prediction of renal impairment using electrocardiography
por: Kwon, Joon-myoung, et al.
Publicado: (2022) -
Artificial intelligence to diagnose paroxysmal supraventricular tachycardia using electrocardiography during normal sinus rhythm
por: Jo, Yong-Yeon, et al.
Publicado: (2021) -
Artificial intelligence algorithm for predicting cardiac arrest using electrocardiography
por: Kwon, Joon-myoung, et al.
Publicado: (2020) -
Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography
por: Cho, Younghoon, et al.
Publicado: (2020) -
Artificial intelligence using electrocardiography: strengths and pitfalls
por: Kwon, Joon-myoung, et al.
Publicado: (2021)