Cargando…
Incorporating support vector machine with sequential minimal optimization to identify anticancer peptides
BACKGROUND: Cancer is one of the major causes of death worldwide. To treat cancer, the use of anticancer peptides (ACPs) has attracted increased attention in recent years. ACPs are a unique group of small molecules that can target and kill cancer cells fast and directly. However, identifying ACPs by...
Autores principales: | Wan, Yu, Wang, Zhuo, Lee, Tzong-Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164238/ https://www.ncbi.nlm.nih.gov/pubmed/34051755 http://dx.doi.org/10.1186/s12859-021-03965-4 |
Ejemplares similares
-
mACPpred: A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides
por: Boopathi, Vinothini, et al.
Publicado: (2019) -
Incorporating Deep Learning With Word Embedding to Identify Plant Ubiquitylation Sites
por: Wang, Hongfei, et al.
Publicado: (2020) -
Regularization, optimization, kernels, and support vector machines
por: Suykens, Johan A K, et al.
Publicado: (2015) -
Prediction of Cell Penetrating Peptides by Support Vector Machines
por: Sanders, William S., et al.
Publicado: (2011) -
Krein support vector machine classification of antimicrobial peptides
por: Redshaw, Joseph, et al.
Publicado: (2023)