Cargando…
Cell Heterogeneity Analysis in Single-Cell RNA-seq Data Using Mixture Exponential Graph and Markov Random Field Model
Advanced single-cell profiling technologies promote exploration of cell heterogeneity, and clustering of single-cell RNA (scRNA-seq) data enables discovery of coexpression genes and network relationships between genes. In particular, single-cell profiling of circulating tumor cells (CTCs) can provid...
Autores principales: | Wang, Yishu, Tian, Xuehan, Ai, Dongmei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164540/ https://www.ncbi.nlm.nih.gov/pubmed/34095314 http://dx.doi.org/10.1155/2021/9919080 |
Ejemplares similares
-
Markov chain models — rarity and exponentiality
por: Keilson, Julian
Publicado: (1979) -
A Markov random field model for network-based differential expression analysis of single-cell RNA-seq data
por: Li, Hongyu, et al.
Publicado: (2021) -
Exponential Random Graph Modeling for Complex Brain Networks
por: Simpson, Sean L., et al.
Publicado: (2011) -
Linking Exponential Components to Kinetic States in Markov Models for Single-Channel Gating
por: Shelley, Christopher, et al.
Publicado: (2008) -
A Markov random field model-based approach for differentially expressed gene detection from single-cell RNA-seq data
por: Zhu, Biqing, et al.
Publicado: (2022)